
Chapter 4

Canonical Correlation Analysis

4.1 Introduction

Consider a situation where the variables divide naturally into two groups and the aim is to investigate

relationships between the two groups.

This is an extension of regression, where one of the groups contains a single variable Y and the

other group contains the regressor variables X1, . . . , Xp. It is assumed that the variable Y can be

expressed in terms of X1, . . . , Xp through an equation

Y = β0 +

p∑

j=1

Xjβj + ǫ,

where ǫ ∼ N(0, σ2) and the errors for different observations are independent, identically distributed.

Canonical correlation analysis considers the situation where there are two groups of variables.

For example, consider the butterfly data set, with 16 colonies of the butterfly Euphydryas editha

in California and Oregon. There are 10 variables; 4 environmental variables and 6 gene frequency

variables. An obvious question to be considered is what relationships, if any, exist between the gene

frequencies and the environmental variables. The technique of canonical correlation analysis is designed

to investigate such questions.

The subject was introduced by Hotelling in 1936 and, in the first example of a canonical correlation

analysis, he considered the four variables: reading speed (X1), reading power (X2), arithmetic speed

(Y1) and arithmetic power (Y2) for seventh grade school children. The specific question addressed

was whether or not reading ability (as measured by X1 and X2) is related to arithmetic ability (as

measured by Y1 and Y2).

Canonical correlation analysis looks for linear combinations

U = a1X1 + a2X2

V = b1Y1 + b2Y2
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which make the correlation of U and V as high as possible. This is similar to Principal Components

Analysis based on the correlation; it is the correlation that is maximised, not the variance.

In his example, Hotelling found that

U = −2.78X1 + 2.27X2

V = −2.44Y1 + 1.00Y2

gave the best correlation, which was 0.62. U measures the difference between reading power and speed,

while V measures something that looks like the difference (modulo some scaling) between arithmetic

power and speed. It is this aspect of reading and arithmetic that seems to have the most in common,

or strongest correlation.

Often it is convenient to calculate more than one pair of canonical correlation variables. If X and Y

are p and q vectors respectively, then one can compute k- vectors U and V where k ≤ min(p, q),L1 is

k × p, L2 is k × q and

U = L1X, V = L2Y .

These variables are chosen so that the correlation between Uj and Vj is maximised subject to the

constraint that Uj and Vj are both uncorrelated with any of the variables U1, . . . , Uj−1, V1, . . . , Vj−1.

Each pair of variables represents an independent dimension in the relationship between X and Y . The

first pair (U1, V1) has the highest correlation and is therefore the most important. The next (U2, V2)

the second highest and so on.

4.2 Setting up the Canonical Correlation Analysis

Firstly, since it is correlations that are under consideration here, start by standardising the variables

(for each, subtract the means and divide through by the standard deviations).

Secondly, for the standardised variables, obtain the covariance matrix C for the p + q vector

(Xt, Y t)t. Let C11 denote the p × p correlation matrix of X and C22 the q × q correlation matrix of

Y and C12 the matrix with entries Cij = Cov(Xi, Yj). Then the p+ q × p+ q correlation matrix C of

(Xt, Y t)t may be expressed as

C :=

(
C11 C12

Ct
12 C22

)
.

Check that C11 and C22 are non-singular, since they have to be inverted, otherwise remove the smallest

number of variables to ensure that they are non singular. Ensure that p ≤ q. If it isn’t, reverse the

roles of X and Y . Let k be the rank of C12.

The aim is to find a L̃1 and L̃2 such that the random vector
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(
U

V

)
=

(
L̃1 0

0 L̃2

)(
X

Y

)

has covariance matrix

(
Ip P

P t Iq

)

where Pii = ρi for i = 1, . . . , k and Pij = 0 for other (i, j). Clearly, L̃1 and L̃2 satisfy:

L̃1C11L̃
t
1 = Ip L̃2C22L̃

t
2 = Iq L̃1C12L̃

t
2 = P.

We have to construct L̃1 and L̃2 satisfying these properties.

We use the following basic result from linear algebra. Let A be a p × q matrix. Then we can

construct a p× p orthonormal matrix H and a q × q orthonormal matrix Q and a matrix P satisfying

Pii = ρi for 1 ≤ i ≤ k ≤ min(p, q) and Pij = 0 otherwise, where ρ21 ≥ . . . ≥ ρ2k, such that A = H ′PQ.

Let A = C
−1/2
11 C12C

−1/2
22 , then

C
−1/2
11 C12C

−1/2
22 = H ′PQ,

where P satisfies the conditions above. Set

L1 = HC
−1/2
11 , L2 = QC

−1/2
22 ,

then clearly

L1C11L
′
1 = HC

−1/2
11 C11C

−1/2
11 H ′ = Ip,

L2C22L
′
2 = Iq,

L1C12L
′
2 = P,

which solves the problem.

Set U = L1X and V = L2Y , then

(
U

V

)
=

(
L1 0

0 L2

)(
X

Y

)
= L

(
X

Y

)
,

where L = diag(L1, L2) (a block diagonal matrix). Then

Cov

(
U

V

)
= LCL′ =

(
Ip P

P ′ Iq

)
.

It is therefore clear that the first k (Uj , Vj) pairs from (Ũ , Ṽ ) constructed in this way satisfy the criteria.

Firstly, only the first k components of Ũ and the first k components of Ṽ are relevant; the others are

uncorrelated.
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4.3 Significance Testing

An approximate relationship between the X variables as a whole and the Y variables as a whole was

proposed by Bartlett.

Theorem 4.1. Let X2 denote the random variable

X2 = −n
r∑

j=1

ln(1− ρ2j ),

where ρ1, . . . , ρr are the sample canonical correlations. Under H0 : ρ1 = . . . = ρr = 0 (i.e. X and Y

are independent) then approximately, for a sample size n,

X2 ∼ χ2
pq.

Large values suggest that at least one of the r canonical correlations is significant. A lack of significance

indicates that even the largest canonical correlation can be accounted for by sampling variation only.

Proof This is a likelihood ratio test. Let

C =

(
C11 C12

C21 C22

)

The assumption is that
(
X
Y

)
has covariance C, where X and Y are the two sets of canonical variables

and we have a null hypothesis: H0 : C12 = 0. Assume we have a sample size of n, there are p

X-variables and q Y -variables; it follows that C12 contains pq parameters, so that the difference in

dimension between H0 and the full parameter space is pq. An asymptotic likelihood ratio test statistic

will therefore have χ2
pq distribution, under the null hypothesis. It remains to show that −2 log Λ, where

Λ is the likelihood ratio test statistic, has the required form.

Letting Z =
(
X
Y

)
denote the whole collection of variables, the likelihood function for n independent

instantiations (say Z = (Z1, . . . , Zn)) is

L(µ,C;Z) =
1

(2π)pq/2|C|n/2 exp
{
−1

2

n∑

i=1

(Zi − µ)′C−1(Zi − µ)

}

=
1

(2π)pq/2|C|n/2 exp
{
−1

2

(
n(Z − µ)′C−1(Z − µ) +

n∑

i=1

(Zi − Z)′C−1(Zi − Z)

)}

Let A be the matrix with entries:

Aij =
n∑

k=1

(Zki − Z .i)(Zkj − Z .j)
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then

L(µ,C;Z) =
1

(2π)(p+q)n/2|C|n/2 exp
{
−1

2
trC−1

(
A+ n(Z − µ)(Z − µ)t

)}

This expression is maximised for µ̂ = Z. To maximise over C, we have to maximise

g(C) = −n

2
log |C| − 1

2
tr(C−1A) (4.1)

=
n

2
log |C−1A| − n

2
log |A| − 1

2
tr(C−1A) (4.2)

=
n

2

p+q∑

j=1

(n log λj − λj)−
n

2
logA (4.3)

The function f(λ) = n log λ − λ has a unique maximum at λ = n. The maximum is n log n − n.

Therefore

g(C) ≤ n(p+ q)

2
log n− n(p+ q)

2
− n

2
log |A|

with equality if and only if λj = n for all j = 1, . . . , p+ q. Hence

Ĉ−1A = nIp+q

so that Ĉ = 1
nA and:

sup
µ,C

L(µ,C) = L(Z, Ĉ) =
1

(2π)(p+q)n/2|Ĉ|n/2
exp

{
−n(p+ q)

2

}

where Ĉ is the maximum likelihoood estimator which is Ĉ = 1
nA (same notation as before).

Under the null hypothesis that C12 = 0,

L(µ,C) = L(µ1, C11)L(µ2, C22)

where µ1 and µ2 are the mean vectors for the X and Y variables respectively. Note that the maximum

likelihood estimators for C11 and C22 remain the same under the restriction of the null hypothesis, so

that

2∏

i=1

sup
µi,Cii

L(µi, Cii) =
1

(2π)(p+q)n/2
e−(p+q)n/2nn/2|A11|−n/2|A22|−n/2.

Hence the likelihood ratio test statistic is:

Λ =
|A|n/2

|A11|n/2|A22|n/2
.
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Now,

|A|
|A11||A22|

=

∣∣∣∣∣∣

(
A11 0

0 A22

)−1(
A11 A12

A21 A22

)∣∣∣∣∣∣

=

∣∣∣∣∣
I A−1

11 A12

A−1
22 A21 I

∣∣∣∣∣ = |I −A−1
11 A12A

−1
22 A21| =

p∏

i=1

(1− ρj)
2.

Recall (Statistics 1) that 2× the log of the likelihood ratio test statistic is asymptotically χ2, with

degrees of freedom equal to the difference in number of parameters between null and alternative; in

this case pq (the number of components of C12). Hence

−2 log Λ ∼n→+∞ χ2
pq.

This test can be modified to allow each of the canonical functions to be tested individually, but the

results have to be treated with caution. There are two basic ideas:

1. Compare the jth contribution of the right hand side, namely

−
(
n− p+ q + 3

2

)
ln(1− ρ2j )

with a χ2
p+q−2j distribution.

2. Compare

−
(
n− p+ q + 3

2

) r∑

k=j+1

ln(1− ρ2k)

with a χ2
(p−j)(q−j) distribution.

The first tests the jth function directly, while the second tests the functions j + 1, . . . , r as a whole.

These tests are unreliable for the same reason as discussed for related tests in discriminant function

analysis: it can happen, by chance, that that the ith sample canonical correlation function is not

a random observation from the ith population canonical correlation function. This gives a larger

probability of wrongly rejecting the hypothesis that the function is insignificant.

4.4 Interpreting Canonical Variates

If

Ui = ai1X1 + . . .+ aipXp
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and

Vi = bi1Y1 + . . .+ biqYq

then it is usual to interpret Ui in terms of the X variables with large coefficients aij and V in terms of

the Y variables with large coefficients bij . Large means either large positive or large negative.

Large correlations within the collection of X variables and large correlations within the collection

of Y variables can upset this interpretation process. Hence if X1 is highly correlated with X2, the

coefficient ail can be substantially negative even if Ui and X1 have a high positive correlation. This

will be compensated for with the coefficient ai2.

If one of the X variables is almost a linear combination of the other X variables, there will be a

whole family of linear combinations, giving very different aij values, that give virtually the same Ui

value.

The interpretation problems that arise with high correlation within the X variables or within the

Y variables should be familiar from study of multiple linear regression; high correlation within one of

the sets of variables leads to variance inflation so that significant canonical correlation functions are

not detected by any significance test.

It is therefore necessary that there is no substantial correlation within the X variables and within the

Y variables; that C11 and C22 are non singular. Otherwise, subtantially different linear combinations

may indicate different canonical variables that represent almost the same information, in which case the

results may not be very meaningful. Worse than this, variance inflation effects may prevent significant

correlations from being detected.

4.5 Canonical Correlation Analysis and Factor Analysis

Just as with factor analysis, we can consider the U variables as factors. Recall that U = L1X, V = L2Y

and hence X = L−1
1 U , Y = L−1

2 V . Just as with factor analysis, if there are k significant factors, we

set Uk+j = 0 for j ≥ 1 to obtain Ũ and similarly for Y ;

X = L−1
1 Ũ + ǫX , Y = L−1

2 Ṽ + ǫY .

From this, we can obtain various things; X̃ = L−1
1 Ũ gives us the part of X which is useful for explaining

Y , similarly Ỹ = L−2
2 Ṽ the information in Y that is correlated with the X variables.

4.6 Example: Environmental and Genetic Correlations for Colonies

of a Butterfly

The data in the butterfly file can be used to illustrate the procedure. There are 16 colonies of the

butterfly Euphydryas editha in California and Oregon. These vary with respect to four environmental

variables (altitude, annual precipitation, annual maximum temperature and annual minimum tempera-

ture) and six genetic variables (percentages of six phosphoglucose-isomerase (Pgi) genes as determined
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by electrophoresis). The data may be found in butterfly.dat on the course home page. Signifi-

cant relationships are of interest, because they may indicate that the butterfly has adapted to local

environments.

Since there are fewer environment variables, the environmental variables have to be treated as X

and the gene variables as Y . But all the gene frequencies cannot be used, since they are percentages

and add up to 100.

Therefore, the 1.30 gene frequency may be omitted. It also seemed a good idea to combine the 0.40

and 0.60 gene fequencies. Thus the X variables considered are X1 altitude, X2 annual precipitation,

X3 annual maximum temperature, X4 annual minimum temperature and the Y variables considered

are Y1 frequency of 0.4 and 0.6 gene, Y2 frequency of 0.8 gene, Y3 frequency of 1.0 gene, Y4 frequency

of the 1.16 gene.

> install.packages("CCA")

> library("CCA")

> install.packages("yacca")

> library("yacca")

> www =

"https://www.mimuw.edu.pl/~noble/courses/MultivariateStatistics/data/

butterfly.dat"

> butterfly <- read.table(www, header=T, quote="\"")

> View(butterfly)

> a <- butterfly[,5]+butterfly[,6]

> y <- cbind(a,butterfly[,7:9])

> y <- simplify2array(y)

> x <- butterfly[,1:4]

> x<-simplify2array(x)

> canon <- cca(x,y,xcenter=TRUE, ycenter=TRUE, xscale=TRUE, yscale=TRUE,

standardize.scores=TRUE)

FIRST these columns are standardised, because it is only correlations that are of interest here, and

the rest of the analysis is performed using the standardised variables.

NEXT the correlation matrix C for the standardised variables is obtained (which is the same as

the correlation matrix for the raw variables) and is partitioned into C11, C22, C12 as described earlier.

NEXT find the eigenvalues λ1, λ2, λ3, λ4 and eigenvectors b1, b2, b3, b4 which solve the eigenvalue

problem

(C
−1/2
22 C21C

−1
11 C12C

−1/2
22 − λjI4)bj = 0

where I4 denotes the 4× 4 identity matrix. Then
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C−1
22 Qt = Lt

2 = (b1, b2, b3, b4).

Here λj = ρ2j .

The canonical correlations are

> canon$corr

CV 1 CV 2 CV 3 CV 4

0.86187348 0.45026476 0.38594833 0.08846899

so let

P̂ = diag(
1

0.86
,

1

0.45
,

1

0.39
,

1

0.09
)

and set

H = P̂QC
−1/2
22 C21C

−1/2
11 .

Finally, the canonical variables U = HC
−1/2
11 X and V = QC

−1/2
22 Y are found by:

> canon

Canonical Correlation Analysis

Canonical Correlations:

CV 1 CV 2 CV 3 CV 4

0.86187348 0.45026476 0.38594833 0.08846899

X Coefficients:

CV 1 CV 2 CV 3 CV 4

alt -0.1243327 -2.4315539 -2.9501097 -1.36853772

prec -0.2931481 0.6752071 -1.3581107 -0.24164723

maxtemp 0.4682769 -0.4785208 -0.5772789 -1.70143588

mintemp 0.2597280 -1.4033550 -3.5314287 0.08820545

Y Coefficients:

CV 1 CV 2 CV 3 CV 4

a 0.5479728 1.766016 3.483095 -0.6632469

gene0p8 0.4217912 2.256306 1.295853 1.4087920

gene1p0 -0.0885412 3.850887 3.747371 0.5044550

gene1p16 0.8256279 2.848238 2.745531 -0.6358737
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Structural Correlations (Loadings) - X Vars:

CV 1 CV 2 CV 3 CV 4

alt -0.9214647 -0.33881431 0.06238689 -0.1794870

prec -0.7708669 0.51342567 -0.26736578 -0.2658457

maxtemp 0.8983191 0.20232579 -0.02405527 -0.3892409

mintemp 0.9193910 0.05251474 -0.22853336 0.3158084

Structural Correlations (Loadings) - Y Vars:

CV 1 CV 2 CV 3 CV 4

a 0.3841633 -0.6200365 0.60266987 0.3236701

gene0p8 0.7395508 -0.1493935 0.08335961 0.6509972

gene1p0 -0.9610740 0.2508416 0.00196467 -0.1158075

gene1p16 0.4753453 0.5147425 -0.44237008 -0.5598175

Aggregate Redundancy Coefficients (Total Variance Explained):

X | Y: 0.6017311

Y | X: 0.4024482

This gives:

{
U1 = −0.12X1 − 0.29X2 + 0.47X3 + 0.26X4

V1 = +0.55Y1 + 0.42Y2 − 0.08Y3 + 0.83Y4,
{

U2 = 2.43X1 − 0.68X2 + 0.48X3 + 1.40X4

V2 = −1.76Y1 − 2.26Y2 − 3.85Y3 − 2.85Y4,
{

U3 = −2.95X1 − 1.36X2 − 0.58X3 − 3.53X4

V3 = 3.48Y1 + 1.30Y2 + 3.75Y3 + 2.75Y4,
{

U4 = −1.37X1 − 0.24X2 − 1.70X3 − 0.09X4

V4 = −0.66Y1 − 1.41Y2 − 0.50Y3 − 0.64Y4,

The correlations are between observed variables and canonical variables are known as the canonical

loadings.

To perform tests of the significance of Canonical Correlation, try:

> canon$chisq

CV 1 CV 2 CV 3 CV 4

18.4140962 4.1550757 1.7760659 0.0825043
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> canon$df

CV 1 CV 2 CV 3 CV 4

16 9 4 1

To ‘look up’ the chi squared table,

> pchisq(canon$chisq,canon$df,ncp=0)

CV 1 CV 2 CV 3 CV 4

0.69978802 0.09908763 0.22314179 0.22606809

Although the canonical correlations seem quite large, Bartlett’s test does not reject the null hypothesis

(that they are insignificant) because the sample size is rather small. It is found that X2 = 18.41 with

16df . The probability of obtaining a value greater than this is 0.30. This is not sufficiently small to

reject the null hypothesis.

Nevertheless, the canonical correlation provides useful pointers at a descriptive level. U1 is mainly

a contrst between the maximum and minimum temperatures on the one hand and precipitation on the

other. V1 has moderate to large coefficients for Y1, Y2 and Y4, with a small negative coefficient for Y3.

It appears that the 0.4, 0.6, 0.8 and 1.16 genes tend to be frequent in colonies with high temperatures

and low precipitation.

If the correlations are studied instead of the coefficients, a slightly different picture emerges. The

correlations between the environmental variables and U1 are

X1 X2 X3 X4

U1 −0.92 −0.77 0.90 0.92

and the correlations between V1 and the gene variables are

Y1 Y2 Y3 Y4

V1 0.38 0.74 −0.96 0.48

This suggests that U1 is best interpreted as a measure of high temperatures and low altitude and

low precipitation.

V1 comes out clearly indicating a lack of 1.00 genes.

Note that the interpretations differ when made on the basis of the coefficients and when made on the

basis of correlations. For U1 the difference is not substantial, but for V1 the importance of the 1.00

gene is very different. On the whole, for this data set, the interpretations based on correlations seem

best. For example, the colony GL, which has highest altitude, high precipitation and low temperatures

has the highest frequency of 1.00 genes. The colony UO with low altitude, low precipitation, high

temperatures has the lowest frequency of 1.00 genes.

Try plotting the values of V1 against U1.
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> u1<- x%*%canon$xcoef[,1]

> v1 <- y%*%canon$ycoef[,1]

There is one outlier; one of the colonies is somewhat unusual compared with the other colonies. From

the interpretations given for U1 and V1, it would seem that the frequency of 1.00 genes is unusually

high for a colony with this environment.

One final remark should be made: if the colonies are located close to each other, then it may be

naive to consider them as 16 independent observations.



4.7 Exercises

1. Consider the covariance matrix

Cov




X1

X2

Y1

Y2




=

(
C11 C12

C21 C22

)
=




100 0 0 0

0 1 0.95 0

0 0.95 1 0

0 0 0 100




Verify that the first pair of canonical variates are U1 = X2, V1 = Y1 with canonical correlation

ρ1 = 0.95.

2. Suppose X and Y are standardised variables (i.e. each with mean zero and unit variance), with

correlation

R =

(
R11 R12

R21 R22

)
=




1.0 0.4 0.5 0.6

0.4 1.0 0.3 0.4

0.5 0.3 1.0 0.2

0.6 0.4 0.2 1.0




.

You may assume that

R
−1/2
11 =

(
1.0681 −0.2229

−0.2229 1.0681

)

R−1
22 =

(
1.0417 −0.2083

−0.2083 1.0417

)

R
−1/2
11 R12R

−1
22 R21R

−1/2
11 =

(
0.4371 0.2178

−0.2178 0.1096

)
.

Determine the canonical correlations ρ1 and ρ2 and the pairs of canonical variates (U1, V1) and

(U2, V2).

3. The 2-random vectors X and Y have joint mean vector and joint covariance matrix

µ =

(
µ
X

µ
Y

)
=




−3

2

0

1




,

C =

(
C11 C12

C21 C22

)
=




8 2 3 1

2 5 −1 3

3 −1 6 −2

1 3 −2 7




(a) Calculate the canonical correlations ρ1 and ρ2.

75



76 CHAPTER 4. CANONICAL CORRELATION ANALYSIS

(b) Determine the canonical variate pairs (U1, V1) and (U2, V2).

4. (a) Show that the canonical correlations are invariant under nonsingular linear transformations

of (X,Y ) of the form (M1X,M2Y ).

You may do this by considering

Cov

(
M1X

M2Y

)
=

(
M1C11M1 M1C12M

t
2

M2C21M
t
1 M2C22M

t
2

)

(b) Let X and Y be two sets of variables and let

E

[(
X

Y

)]
=

(
µ
X

µ
Y

)
, Cov

(
X

Y

)
=

(
C11 C12

C21 C22

)
.

Set

Z1 = C
−1/2
11 (X − µ

X
), Z2 = C

−1/2
22 (Y − µ

Y
).

If (Ui, Vi) = (L
(1)
i. X,L

(2)
i. Y ) are the canonical variables for (X,Y ), i = 1, . . . , p, with canon-

ical correlations ρ1, . . . , ρp, determine the canonical variates and the canonical correlations

for the sets (Z1, Z2).

5. (a) Let R denote the correlation matrix of

(
X

Y

)
, where

R =




1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1




.

Determine the canonical coordinates corresponding to non zero canonical correlation.

(b) Generalise the results of the previous part to the case where X has p components and Y

has q components. Assume ρ > 0.

Hint: R12 = ρ1p1
t
q where 1k denotes a vector length k with each entry 1 and

R111p = (1 + (p− 1)ρ)1p

so that

R
−1/2
11 1p = (1 + (p− 1)ρ)−1/2

1.

6. (Correlation for angular measurements) Some observations, such as wind direction are in the

form of angles. Let Y = (cos(θ), sin(θ))t.



4.7. EXERCISES 77

(a) Show that btY =
√

b21 + b22 cos(θ − β), where

1√
b21 + b22

(b1, b2) = (cos(β), sin(β))

(use cos(θ − β) = cos(θ) cos(β) + sin(θ) sin(β))

(b) Let X have a single component. Show that the single canonical correlation is

ρ1 = max
β

Corr(X, cos(θ − β)).

Selecting the canonical variable V1 therefore amounts to selecting a new origin for the angular

variable θ.

(c) Let X denote the amount of ozone (in parts per million) and θ the wind direction measured

from the north. Nineteen measurements made in downtown Milwaukee, Wisconsin, give the

sample correlation matrix

R =




1.0 0.166 0.694

0.166 1.0 −0.051

0.694 −0.051 1.0


 .

Compute the sample canonical correlation ρ̂1 and the sample canonical variate V̂1 repre-

senting β, the new origin.

(d) Suppose that X = (cos(φ), sin(φ)), so that

atX =
√

a21 + a22 cos(φ− α).

Prove that

ρ1 = max
α,β

Corr(cos(φ− α), sin(θ − β)).

(e) Twenty one observations on the 6.00 a.m. and noon wind directions give the correlation

matrix

R =




1.0 −0.291 0.440 0.372

−0.291 1.0 −0.205 0.243

0.440 −0.205 1.0 0.181

0.372 0.243 0.181 1.0




Find the first sample canonical correlation ρ̂1 and corresponding canonical variates (Û1, V̂1).



Short Answers

1. The correlation matrix is

R =




1 0 0 0

0 1 0.95 0

0 0.95 1 0

0 0 0 1




The first pair U1 = a1X1 + a2X2, V1 = b1Y1 + b2Y2. They must satisfy Var(U1) = Var(V1) = 1.

Since X1, X2 are independent and Y1, Y2 are independent, it follows that a21 + a22 = b21 + b22 = 1

to give highest correlation

R(a1X1 + a2X2, b1Y1 + b2Y2)

= a1b1R(X1, Y1) + a1b2R(X1, Y2) + a2b1R(X2, Y1) + a2b2R(X2, Y2) = 0.95a2b1

Maximised if a2 = b1 = 1 (or a2 = b1 = −1). Hence (up to sign)

U1 = X2, V1 = Y1.

2. Since p = q = 2 (using notation of lectures) we can exchange the roles of the X and Y variables.

Let L(1) and L(2) denote the linear transformations such that L(1)X = U and L(2)Y = V . Then,

from lectures, L(1) = QR
−1/2
11 and L(2) = HR

−1/2
22 where Q and H are 2×2 orthonormal matrices

that have to be determined, which satisfy

HtPQ = R
−1/2
22 R21R

−1/2
11 .

From this,

Q(R
−1/2
11 R12R

−1
22 R21R

−1/2
11 )Qt = P tP

where P tP = diag(ρ21, . . . , ρ
2
k, 0, . . . , 0). It follows that ρ2j = λj where λj is the jth eigenvalue

of M := R
−1/2
11 R12R

−1
22 R21R

−1/2
11 . The eigenvalues are computed as the roots of the equation

|M − λI| = 0.

Furthermore,

HtPQ = R
−1/2
22 R21R

−1/2
11

gives

HtP = R
−1/2
22 R21R

−1/2
11 Qt

P tH = QR
−1/2
11 R12R

−1/2
22

PL(2) = L(1)R12R
−1
22

In this example,

78
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0 =

∣∣∣∣∣
0.4371− λ 0.2178

0.2178 0.1096− λ

∣∣∣∣∣ = (0.4371− λ)(0.1096− λ)− (2.178)2 = λ2 − 0.5467λ+ 0.0005

ρ21 = λ1 = 0.5458, ρ22 = λ2 = 0.0009.

Now, compute Q. The row (Qj1, . . . , Qjq) satisfies

Mej = λjej

where

etj = (Qj1, . . . , Qjq).

It follows that (
0.4371 0.2178

0.2178 0.1096

)
e1 = 0.5458e1

giving

e1 =

(
0.8947

0.4466

)

(L
(1)
11 , L

(1)
12 ) = (Q11, Q12)R

−1/2
11 = (0.8561, 0.2776).

It follows that

U1 = 0.8561X1 + 0.2776X2.

For (L
(2)
11 , L

(2)
12 ),

ρ1(L
(2)
11 , L

(2)
12 ) = (L

(1)
11 , L

(1)
12 )R12R

−1
22 = (0.8561, 0.2776)

(
0.3959 0.5209

0.2292 0.3542

)
= (0.4026, 0.5443)

Note that

ρ21 = 0.5460

(L
(2)
11 , L

(2)
12 ) =

1√
0.5460

(0.4026, 0.5443) = (0.5448, 0.7366).

U1 = 0.86X1 + 0.28X2

V1 = 0.54Y1 + 0.74Y2

Their canonical correlation is ρ1 =
√
0.5458 = 0.74. Computation of (U2, V2) is similar.

3. Computation is the same as the previous example - first create a correlation matrix

R =




1 1/
√
10

√
3/4 1/2

√
14

1/
√
10 1 −1/

√
30 3/

√
35√

3/4 −1/
√
30 1 −

√
2/21

1/2
√
14 3/

√
35 −

√
2/21 1



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4. (a) Suppose a canonical correlation analysis is carried out on the covariance matrix in the old

coordinates, where X is a p vector and Y is a q vector and suppose the analysis yields that

there are k correlated variables, (U, V ) = (L(1)X,L(2)Y ), where where L(1) is a k×p matrix

and L(2) is a k× q matrix. Then there is a p× p matrix L̃(1) and a q× q matrix L̃(2) where

the first k rows of L̃(1) are L(1) and the first k rows of L̃(2) are L(2) and such that

L̃(1)C11L̃
(1)t = Ip, L̃(2)C22L̃

(2)t = Iq, L̃(1)C12L̃
(2)t = P,

where

Pii = ρi, i = 1, . . . , k, Pij = 0 other (i, j)

and ρ1, . . . , ρk are the correlations.

Now try a canonical correlation on M1X and M2Y . There is a p×p matrix T (1) and a q× q

matrix T (2) such that

T (1)M1C11M
t
1T

(1)t = Ip, T (2)M2C22M
t
2T

(2)t = Iq, T (1)M1C12M
t
2T

(2) = P2

where P2 only has non zero elements on the diagonals, which are the canonical correlations.

Comparing the first two equations for both pairs gives (easily) that

T (1)M1 = H1L
(1), T (2)M2 = H2L

(2)

for some orthonormal matrices H1 and H2. It follows that P2 = H1PHt
2. Hence P2 = P ,

hence the canonical correlations are the same and the k transformations are given by T̃ (1) =

L̃(1)M−1
1 and T̃ (2)M−1

2 . It follows that the canonical variables for the new coordinates are

(U, V ), as before.

IMPORTANT POINT: This means that, after centring the variables, one can apply a canon-

ical correlation analysis to the original (centred) variables using the covariance matrix, or

to the standardised variables using the correlation matrix. The resulting pairs (U, V ) will

be the same.

(b) The canonical correlation analysis is based on the covariance matrix; the centring is not

taken into consideration. From the preceeding part, if the transformations for the original

variables are L̃(1), L̃(2) then for (Z1, Z2), the transformations are L(1)C
1/2
11 and L(2)C

1/2
22 .

Therefore, for the transformed variables, the correlated variables are

(Ũi, Ṽi) = (atiC
1/2
11 Z1, b

t
iC

1/2
22 Z2) = (Ui − atiµX

, Vi − btiµY
).

5. (a) Consider R11. The eigenvalues are solutions to (1 − λ)2 − ρ2 = 0 giving λ1 = 1 + ρ and

λ2 = 1− ρ. Then, since L(1)R11L
(1)t = I2, solving

(R11 − (1 + ρ))v1 = 0, (R11 − (1− ρ))v2 = 0
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gives (the rows may be multiplied by ±1 and they may be swapped around)

L(1) =




1√
2(1+ρ)

1√
2(1+ρ)

1√
2(1−ρ)

− 1√
2(1−ρ)


 .

Similarly (the rows may have to be altered by multiplying by ±1 and they may be swapped

around)

L(2) =




1√
2(1+ρ)

1√
2(1+ρ)

1√
2(1−ρ)

− 1√
2(1−ρ)


 .

So that P is a diagonal matrix, with values non negative and in descending order, it follows

that (for ρ > −1
3) the matrix of correlations is

P = ρL(1)

(
1 1

1 1

)
L(2)t =

(
2ρ
1+ρ 0

0 0

)

and there is only one pair of correlated variables;

L(1) =
(

1√
2(1+ρ)

1√
2(1+ρ)

)
U =

1√
2(1 + ρ)

(X1 +X2)

L(2) =
(

1√
2(1+ρ)

1√
2(1+ρ)

)
U =

1√
2(1 + ρ)

(Y1 + Y2)

with correlation 2ρ
1+ρ . Note: the covariance matrix for

(
X

Y

)
is no longer positive definite

and hence no longer a covariance matrix if ρ < −1
3 .

(b) Following a similar technique: firstly note that 1 − ρ is an eigenvalue of multiplicity p − 1

for R11, since R11 − (1 − ρ)Ip is the matrix with each entry ρ and it is possible to find

p − 1 vectors, v2, . . . , vp, orthonormal to each other and satisfying
∑p

j=1 vkj = 0 such

that (R11 − (1 − ρ)Ip)vk = 0. They are orthogonal to v1
1√
p(1, . . . , 1)

t which is therefore

the remaining eigenvector and solving gives the remaining eigenvalue λ1 = 1 + (p − 1)ρ.

Similarly for R22.

It follows (as before) by considering P = L(1)R12L
(2)t that there is exactly one pair of

correlated variables (because, similarly to before, the other entries of the matrix P are all

zero) and the pair is

U1 = c1

p∑

j=1

Xj

V1 = c2

q∑

j=1

Yj
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for constants c1 and c2 to be determined. To ensure that Var(U1) = 1, it follows that

c1 =
1√

p(1+(p−1)ρ)
and c2 =

1√
q(1+(q−1)ρ)

, with canonical correlation

ρ1 = Cov(U1, V1) =

√
pqρ√

(1 + (p− 1)ρ)(1 + (q − 1)ρ)
.


