
Chapter 3

Penalised Regression Methods

We continue with the discussion of regression methods when XtX is singular, or close to singular. So

far, we have introduced PC regression, which is a shrinkage estimator. We now continue with other

shrinkage methods.

3.1 Ridge Regression

If XtX is close to singular, it can be made non-singular by adding a small constant k to the diagonal

entries before taking the inverse: ((XtX) + kIr)
−1 is used instead of (XtX)−1. The ridge regression

estimator is therefore:

β̂rr = (XtX + kI)−1XtY = W (k)β̂OLS

where

W (k) = (XtX + kI)−1XtX.

Here k ≥ 0. When k > 0, the estimator is biased. The parameter k is chosen to minimise Qres, the

error sum of squares. It can be characterised in the following two ways:

1. A ridge regression estimator is the solution of a penalised least squares problem. Specifically, it

is the r-vector β that minimises

Qres := (Y −Xβ)t(Y −Xβ)

subject to the condition that ‖β‖2 ≤ c where c is a constant chosen by the user.

In the two dimensional setting (where β =
(
β1

β2

)
), this may be represented pictorially: the level

sets (Y − Xβ)t(Y − Xβ) = k for k ≥ 0 are ellipses. The value of k, say k(c) is chosen as the

smallest k such that the ellipse intersects the circle ‖β‖2 ≤ c and estimate of
(
β1

β2

)
is the value

such that (Y −Xβ)t(Y −Xβ) = k(c) and ‖β‖2 = c.
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42 CHAPTER 3. PENALISED REGRESSION METHODS

Such constrained optimisation problems may be solved using the standard Lagrange multiplier

technique. Consider the function

φ(β) = (Y −Xβ)t(Y −Xβ)− λβtβ

where λ ≥ 0 is a Lagrange multiplier. Differentiating with respect to β and setting the derivative

equal to 0 gives

(XtX + λI)β̂rr(λ) = XtY ⇒ β̂rr(λ) = (XtX + λI)−1XtY.

The value of λ is determined by the constraint that βtβ ≤ c.

2. A ridge regression estimator is a shrinkage estimator that shrinks the OLS estimator towards

zero.

Consider the singular value decomposition of X as UΛ1/2V t where U is n × n orthonormal, V

is r × r orthonormal and Λ1/2 is the diagonal matrix of eigenvalues: the values of Λ are ordered

highest to lowest. Let G = XV = UΛ1/2 so that GtG = Λ, then

β̂rr(k) = (XtX + kI)−1XtY

= (V ΛV t + kV V t)−1V Λ1/2U tY

= V (Λ + kI)−1Λ1/2U tY

= V (Λ + kI)−1GtY.

Set α = V tβ, so that β = V α, then the canonical form of the regression model is:

Y = Xβ + ǫ = Gα+ ǫ

and the OLS estimator of α is

α̂ols = (GtG)−1GtY = Λ−1V tXtY.

Set

α̂rr = V tβ̂rr = (Λ + kI)−1GtY = (Λ + kI)−1Λα̂ols.

Hence we have, for the jth component,

α̂rr,j(k) =

(
λj

λj + k

)
α̂ols,j .
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Hence

‖β̂rr(k)‖2 = ‖α̂rr(k)‖2 =
k∑

j=1

(
λj

λj + k

)
α̂2
ols

which is monotonically decreasing as a function of k. Hence ‖β̂rr(k)‖ < ‖β̂ols‖ for all k > 0,

hence the ridge estimator is a shrinkage estimator.

The Bias-Variance Trade-off The mean squared error of the ridge regression estimator is:

MSE(k) = E[(β̂rr(k)− β)t(β̂rr(k)− β)] = Var(k) + Bias2(k).

It is straightforward to compute these terms:

Var(k) = tr(σ2(XtX + kI)−1XtX(XtX + kI)−1

= σ2tr{(Λ + kI)−1Λ(Λ + kI)−1}

= σ2
r∑

j=1

λj

(λj + k)2
.

The bias is

E[β̂rr(k)]− β = {(XtX + kI)−1XtX − I}β
= {(V ΛV t + kI)−1V ΛV t − I}V α

= V {(Λ + kI)−1Λ− I}α.

The bias-squared term is therefore

Bias2(k) = k2
r∑

j=1

α2
j

(λj + k)2

giving a total mean squared error of:

MSE(k) =
r∑

j=1

σ2λj + k2α2
j

(λj + k)2

where λj is the jth largest eigenvalue of XtX and σ2 is the error variance.

The ridge parameter is chosen to minimise the mean squared error although this expression is not

so useful.
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Estimating the Ridge Parameter One way of estimating k is known as the ridge trace. This is a

graphical display of all the components of the vector β̂rr(k) plotted on the same scatterplot against a

range of values of k. The value of k to be used is estimated as the smallest value for which the trace

stabilises for all coefficients.

The ridge trace is also used as a variable selection procedure. If an estimated regression coefficient

changes sign in the graph of its ridge trace, this is taken to mean that the OLS estimator of that

coefficient has an incorrect sign, so that the variable should not be included. However, this is heuristic

and there are situations where a variable with good predictive properties can be eliminated by this

method.

Cross validation can be used, which we deal with shortly.

3.2 Estimating Prediction Error

Consider linear regression, where the assumption is that the errors are mean zero with variance σ2

and that they are uncorrelated, but we make no further distributional assumptions. Without the

assumption of Gaussianity, the prediction intervals computed under the assumption of Gaussianity are

not valid.

The empirical prediction error, computed when the parameters are estimated on a learning set and

the prediction error is then estimated on an independent ‘test’ set is the benchmark for evaluating the

performance of a linear model.

We consider two possibilities for the X matrix: it may be that the explanatory variables are arrived

at in a random manner, so that (Yi, Xi.)
n
i=1 may be considered as a collection of n independent identially

distributed row vectors, or it may be that X is designed: the values of X are chosen by the user (and

hence non-random) and Y is a response. We use the terms random X case and non-random X case

to describe these two situations.

When the entire data set is sufficiently large, we can partition the data into learning sets (for

learning the parameters) and test sets (for estimating the prediction error) and validation sets (to

see if our prediction error, computed empirically using the test set) corresponds to the error for new

observations.

Often, though, the data set is not large enough for this, or such a division may not be practical for

other reasons. In such a situation, there are alternative methods.

3.2.1 Apparent Error Rate

Suppose that β has been estimated as β̂ and hence, for a new instantiation (y, x), the predicted value

of y is ŷ = µ̂(x) = xβ (where x is taken as a row vector: β as a column vector).

Using squared error loss function, the loss incurred by predicting y by µ(x) is defined as:

L(y, µ(x)) = (y − µ(x))2.
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The loss in this case is therefore (y − µ̂(x))2. The apparent error rate, using the entire data set could

therefore be estimated by:

P̂E(µ̂) =
1

n

n∑

i=1

(Yi − µ̂(Xi.))
2 =

Qres
n

.

This (of course) is misleadingly optimistic: firstly, we should divide by n − r rather than n. This

shouldn’t affect the answer too much when n >> r. More importantly, (yi, Xi.) is being used both to

estimate µ̂ and then as a ‘new’ observation. This (of course) is true both for random-X and fixed-X.

We now consider ‘cross validation’, a technique which is useful for the random-X case, but is not

appropriate for fixed-X.

3.2.2 Cross Validation

Suppose that the data set is an i.i.d. sample of n observations from the r+1 random vector (Y,X). If

n = 2m, then split the data into two disjoint sets, each with m data points: compute µ̂ based on data

m+ 1, . . . , 2m and then estimate the prediction error by:

P̂E =
1

m

m∑

i=1

(Yi − µ̂(Xi))
2.

An overall prediction error can be estimated by switching the roles of the two sets to obtain another

estimate and then averaging over the two.

This procedure may be generalised. Assume that n = V m, where V is a small integer. In the above,

we had V = 2. We split the data randomly into V disjoint subsets each of size m. We then use V − 1

of the subsets for learning the parameters and the remaining subset to estimate the prediction error.

We can compute V estimates in this way and we average over them.

The most computationally intensive version of cross validation is ‘leave one out’, or LOO. In this

setting, µ̂i is computed by leaving out observation i and then the prediction error is estimated by:

P̂ELOO =
1

n

n∑

i=1

(Yi − µ̂−i(Xi))
2.

Now consider estimation of the model error ME, defined by:

ME = E[(µ̂(X)− µ(X))2] = (β − β̂OLS)
tΣXX(β − β̂OLS) + (β̂ − β,mX)2

where µ̂ is the estimate of µ computed from the observations and the expectation is taken with respect

to a new, independent copy of the r-vector X. Σ denotes covariance and mX denotes expectation. We

would like to estimate the model error. This is done quite simply by subtracting the variance estimate

from the prediction error:
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M̂E = P̂E − σ̂2,

where σ̂2 = Qres

n−r , r is the rank of X.

3.2.3 Bootstrap

Estimating prediction error may also be carried out using bootstraps. We use unconditional bootstrap

in the random-X case and a conditional bootstrap for the fixed-X case.

Firstly, sample n times with replacement from the original sample to get a random-X bootstrap

sample. Obtain the OLS estimate using this sample. Then estimate the prediction error by averaging

over (Y − µ̂(X))2 for those points (Y,X) which are not included in the original bootstrap sample.

3.2.4 Conditional Bootstrap

The conditional bootstrap for the fixed-X case operates by sampling with replacement from the residuals

obtained from OLS regression using the complete sample. Firstly, the regression is performed, the

residuals computed and σ̂2 computed. Having re-sampled n errors e∗1, . . . , e
∗
n, we compute n ‘new’

responses

Y ∗
i = µ̂(Xi) + e∗i i = 1, . . . , n

where µ̂ is obtained by OLS regression using the complete sample. Then Y ∗ is regressed on X to get

the bootstrapped estimator of the regression coefficients β∗. Under this bootstrap sampling scheme,
√
n(β∗ − β̂) has, approximately, the same distribution as

√
n(β̂ − β).

3.2.5 Cross Validation for Ridge Regression

We have already seen ‘leave one out’ cross validation in study of the UBC (unbiased cross validation)

density estimator. The V-fold Cross-validation algorithm for Ridge Regression and choosing the ridge

parameter k is as follows:

1. Standardise each column of X so that it has mean 0 and standard deviation 1.

2. Partition the data into V learning and test sets, where V = 4, 10 or n. For example, with LOO

(leave one out) there are n learning /test sets, each learning set constructed by leaving out one

of the variables; the test set is the variable left out.

3. Choose possible values of k, equally spaced, say k1, . . . , kN .

4. For i = 1, . . . , N and v = 1, . . . , V

• Use the vth learning set to compute the coefficients β̂v(ki)
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• Obtain an estimate of the prediction error P̂Ev(ki) by using β̂v(ki) on the vth test set.

5. For i = 1, . . . , N

• Average the V prediction error estimates to get an overall estimate of the prediction error.

• Plot the overall estimate against ki.

6. Choose the value of k that minimises the estimated average prediction error.

3.3 Regularised Regression

Both ridge regression and variable selection have their advantages and disadvantages. It would therefore

be useful to construct a hybrid of these which takes the best properties of both methods.

Consider the general form of the penalised least squares criterion: minimising

φ(β) = (Y −Xβ)t(Y −Xβ) + λp(β)

for a given penalty p and regularisation parameter λ. For example: let

pq(β) :=
r∑

j=1

|βj |q

Similarly to ridge regression, we can choose λ so that the minimising β solves the standard least squares

problem subject to the constraint
∑

j |βj |q ≤ c for a fixed c > 0. If we subscript the φ function by q,

then φq is a smooth convex function for q > 1 and convex for q = 1.

Ridge regression corresponds to q = 2. The ridge regression estimator is that point on the elliptical

contours of Qres(β) centred at β̂OLS which first touches the hypersphere
∑

j β
2
j ≤ c. The parameter c

controls the size of the hypersphere and hence how much β̂OLS is shrunk towards the origin.

When q 6= 2, the penalty is no longer rotationally invariant. The most interesting case is q < 2

where the penalty function collapses towards the coordinate axes. It not only shrinks the coefficients

towards zero; it also sets some of them to be zero.

The case of q = 1 produces the so-called LASSO (Least Absolute Shrinkage and Selection Operator).

Therefore, the LASSO method finds a β which minimises

φ(β) := (Y −Xβ)t(Y −Xβ) + λ

r∑

j=1

|βj |.

The OLS regression coefficients are shrunk towards the origin, with the value of c (equivalently λ)

controlling the amount of shrinkage. At the same time, it also behaves like a variable selection tech-

nique.For a given value of c > 0, only a subset of the coefficient estimates β̂j : j = 1, . . . , r will have

non-zero values. A coefficient value will be exactly zero when one of the elliptical contours of the

function
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Qres(β) = Qres(β̂OLS) + (β − β̂OLS)
tXtX(β − β̂OLS)

touches a corner of the diamond shaped penalty function.

3.4 The Garotte

This tecnhique only works when β̂OLS exists. Let W be a diagonal matrix with nonnegative weights

along the diagonal. The problem is to find the weights which minimise:

φ(w) = (Y −XWβ̂OLS)
t(Y −XWβ̂OLS)

subject to one of the following two constraints:

1. wj ≥ 0 for each j,
∑

k wj ≤ c

2.
∑

j w
2
j ≤ c.

As c is decreased, more of the wj become 0, thus eliminating those variables. The non-zero estimates

shrink towards 0.

In these regression techniques, the regularisation parameter λ presents a compromise between how well

the function fits the data and the size of the coefficients. The value of λ is determined by V -fold cross

validation.

3.5 Least-Angle Regression

This is an automatic variable-selection method, which may be used in situations where r >> n.

Assume that the variables have been centred and standardised, so that there is no β0 coefficient,∑
iXij = 0 and

∑
iX

2
ij = 1 for each j = 1, . . . , r. The ‘output’ variable has mean zero:

∑
i Yi = 0.

We consider two algorithms, the forward stagewise and LARS

Let ĉ denote the current correlations between the columns of X and the current residual vector

r = Y − µ̂, where µ̂ is the current estimated mean value.

The Forwards Stagewise Algorithm

1. Initialise β̂ = 0 so that µ̂ = 0. Set r = Y .

2. Find the covariate vector X.j1 most highly correlated with Y (j1 = argmaxj |ĉj |).

3. Update β̂j1 ← β̂j1 + ǫsgn(ĉj1) where ǫ is a small constant that controls the step length.

4. Update µ̂← µ̂+ δj1X.j1 and r ← r − δj1X.j1 .

5. Return to 2., repeat loop until convergence.
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The LARS Algorithm The LARS algorithm improves on this:

1. Initialise β̂ = 0 so that µ̂ = 0 and r = Y . Start with the ‘active’ set of indices A as the empty

set.

2. Find the covariate vector X.j1 most highly correlated with r. Set A← A∪{j1}. Add X.j1 to the

regression model.

3. Move β̂j1 in the direction sgn(ĉj1) (choosing ǫ as in forward stagewise) until some other covariate

vector, say X.j2 has the same correlation with r as X.j1 . The new active set is A← A∪{j2} and

X.j2 is added to the model.

4. Update r and move (β̂j1 , β̂j2) in the joint OLS direction when r is regressed against (X.j1 , X.j2),

until a third covariate vector X.j3 has the same correlation with r as the first two variables. Add

j3 to A and add Xj3 to the regression model.

5. After k LARS steps, A = {j1, . . . .jk}. Let µ̂A denote the current LARS estimate, where exactly

k coefficients (β̂j1 , . . . , β̂jk) are non-zero. The current vector of correlations is: ĉ = Xt(Y − µ̂A).

6. Continue until all r covariates have been added to the model and ĉ = 0. THis is the OLS solution.

The R package lars includes a Cp type statistic as a stopping rule for choosing a suitable LARS model.



Tutorial 3 (Written Exercises)

1. PLS (Partial Least Squares) Regression Recall the PLS algorithm from lectures. Show that

if XtX = I (where the columns of X have been centred and standardised) then the algorithm

stops after a single step.

2. Consider the regression problem where the n × r matrix X has been centred and standardised;

there are p explanatory variables. Let S = 1
nX

tX. For a deterministic vector α, the notation

Var(Xα) therefore denotes αtSα.

(a) For PC regression, show that the mth principal component direction vm solves:

max
α

Var(Xα)

subject to: ‖α‖ = 1 and αtSvj = 0 for j = 1, . . . , j − 1.

(b) Show that the mth PLS direction φ̃m (i.e. Zm =
∑r

j=1 φ̃mjX
(m)
.j ) solves:

max
α

Corr2(Y,Xα)Var(Xα)

subject to: ‖α‖ = 1, αtSφ̃l = 0, l = 1, . . . ,m− 1.

(c) Hence show that PLS directions are a compromise between OLS estimation and PC direc-

tions.

3. Consider the problem Y = Xβ + ǫ where X is an n × p + 1 matrix, with X.0 = 1n (1n is the

n-vector with each entry 1; the first column of X, labelled column 0, is a column of 1s). Let

β = (β0, β1, . . . , βp)
t. Let X̃ denote the n × p matrix which is obtained by centring columns

1, . . . , p of X. That is:

(0|X̃) = (In − 1n1
t
n)X

where In denotes the n× n identity matrix. Show the relation between β̂rr and β̂
(c)
rr where

β̂rr = argminβ{(Y −Xβ)t(Y −Xβ) + k‖β‖2}

and β̂
(c)
rr = (β̂

(c)
0;rr|β̂

(c)t
1;rr)

t satisfies:

β̂(c)
rr = argminβ(c){(Y − β

(c)
0 1n − X̃β

(c)
1 )t(Y − β

(c)
0 1n − X̃β

(c)
1 ) + k(β

(c)2
0 + ‖β(c)

1 ‖2)}

where β(c) is a p+ 1 vector; β(c) = (β
(c)
0 |β

(c)t
1 )t and β

(c)
1 is a p vector.
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4. Consider a Bayesian approach to the regression problem. Let β be a p-vector of parameters and

let π(β) (the prior distribution over the parameters) be N(0, τIp) where τ > 0 and I denotes the

identity matrix. Suppose that the conditional distribution of Y (the n-vector of observations)

given β is: Y |β ∼ N(Xβ, σ2I).

Compute the posterior distribution π(β|Y ) (up to proportionality) and show that the mean (and

mode) of the posterior is the same as the regression estimate of the parameter vector β.

What is the ridge parameter k in terms of τ and σ2?

5. Consider the following technique to turn a ridge regression problem into an OLS problem. Aug-

ment the n× r matrix X by adding in r additional rows; these rows form an r × r matrix
√
kI.

Call the resulting matrix X∗. Augment the n-vector Y by adding in r zeros and call the resulting

vector Y ∗. Show that the ridge regression estimator is obtained by regressing Y ∗ against X∗.

This gives a way of carrying out ridge regression, although much of the output will be irrelevant

for the original problem of regressing Y on X.

6. Suppose we run a ridge regression, with ridge parameter k, where X = (1n|x); x = (x1, . . . , xn)
t is

an n vector (i.e. there is one explanatory variable) and obtain parameter estimates β̂ = (β̂0, β̂1)
t.

Suppose we now run a ridge regression using X∗ = (1n|x|x) (i.e. we introduce another variable

which is exactly the same). Show that the parameter estimates are: β∗ = (β̂0, β̂1, β̂1)
t.

7. Consider the LASSO estimator for the coefficients β for a model Y = Xβ + ǫ. That is: β

minimises (Y −Xβ)t(Y −Xβ) subject to the constraint that
∑
|β| ≤ t for some t > 0. Suppose

that the fitted value for variable Xj is β̂j = a. Suppose that we now augment the set of variables

by X∗ which is an identical copy of Xj . Suppose that γ̂∗ and γ̂j are the parameter estimates

for X∗ and Xj respectively in the enlarged model. Describe the set of solutions for the enlarged

model, in terms of solutions for the original model, for fixed parameter t.

8. Consider the problem of minimising

L(β) := (Y −Xβ)t(Y −Xβ)

subject to the constraint
∑

j |βj | ≤ t. Suppose that this is obtained by minimising

L(β) + λ
∑

j

|βj |

(λ is the value such that the solution of the constrained optimisation problem is the minimiser

of the Lagrange functional).

For each j = 1, . . . , r, set βj = β+
j − β−

j where β+
j = max(βj , 0) and β−

j = −min(βj , 0).
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(a) Show that the solution to the problem can be obtained by finding the minimum of the

functional:

F(β) = (Y −Xβ)t(Y −Xβ) + λ
∑

j

(β+
j + β−

j )−
∑

j

λ+
j β

+
j −

∑

j

λ−
j β

−
j

subject to conditions: λ+
j β

+
j = 0, λ−

j β
−
j = 0, so that the solution is obtained by solving:





∂
∂βj

L(β) + λ− λ+
j = 0

− ∂
∂βj

L(β) + λ− λ−
j = 0

λ+
j β

+
j = 0 λ−

j β
−
j = 0 j = 1, . . . , r

(b) Show that
∣∣∣ ∂
∂βj

L(β)
∣∣∣ ≤ λ for all j = 1, . . . r and that one of the following three scenarios

holds for the optimal β:

i) λ = 0⇒ ∂
∂βj

L(β) = 0 for j = 1, . . . , r

ii)

β+
j > 0, λ > 0 ⇒ λ+

j = 0,
∂

∂βj
L(β) = −λ < 0, β−

j = 0

iii)

β−
j > 0, λ > 0⇒ λ−

j = 0,
∂

∂βj
L(β) = λ > 0, β+

j = 0.

(c) Hence show that for any ‘active’ predictor with βj 6= 0, either ( ∂
∂βj

L(β) = −λ and βj > 0)

or ( ∂
∂βj

L(β) = λ and βj < 0).

(d) Assuming the predictors are standardised, relate λ to the correlation between the jth pre-

dictor and the residuals.

(e) Suppose that the set of active predictors is unchanged for λ0 ≥ λ ≥ λ1. Show that there is

a vector γ0 such that

β̂(λ) = β̂(λ0)− (λ− λ0)γ0 λ ∈ [λ1, λ0].

Thus the LASSO path is linear as λ ranges from λ0 to λ1.
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Answers

1. Let us follow through the algorithm in the setting where XtX = I. First, the variables are

centred and standardised - we assume this is done.

Step 1 Regress Y (k−1) on X
(k−1)
.j for each j to get β̂k−1,j =

Cov(X(k−1)
.j ,Y (k−1))

Var(X(k−1)
.j

. Since Var(X
(0)
.j ) =

1, this gives:

β̂j = Cov(X.j , Y )

Now take the weighted average; Zk ∝
∑r

j=1 Cov(X
(k−1)
.j , Y (k−1))X

(k−1)
.j . This gives

Z =
r∑

j=1

β̂jX.j

and since XtX = I and X is centred (so it has mean 0),

Var(Z) =
r∑

j=1

β̂2
j

Now regress Y (k−1) on Zk to get the OLS coefficient

θ̂k =
Cov(Zk, Y

(k−1))

Var(Zk)
.

Here Cov(Zk, Y
(k−1)) =

∑r
j=1 β̂jCov(X.j , Y ) =

∑r
j=1 β̂

2
j so

θ̂ = 1

Now, Y (1) is the residual vector;

Y (1) = Y − Z

and now we remove from X.j its projection onto Z; do an OLS to get coefficient

φ̂kj =
Cov(Zk, X

(k−1)
.j )

Var(Zk)

so that, using XtX = I (which gives orthogonality),

φ̂j =
β̂j∑
i β̂

2
i

X
(1)
.j = X.j −

β̂j∑
i β̂

2
i

Z

so that
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Cov(X
(1)
.j , Y (1)) = Cov(X.j , Y )− Cov(X.j , Z)− β̂j∑

i β̂
2
i

Cov(Y, Z) +
β̂j∑
i β̂

2
i

Var(Z)

= β̂j − β̂j − β̂j + β̂j

= 0 ∀j = 1, . . . , r.

The termination occurs when all these covariances are 0.

2. (a) Straight from the definition: The PCR directions are the eigenvectors of XtX = PΛP t

where P is orthonormal. Since the columns of X have been centralised (so that they have

mean 0), therefore:

Var(Xα) =
1

n

n∑

i=1

(

r∑

j=1

Xijαj)
2 =

1

n
αtXtXα = αtPΛPα.

Now, we can remove the constraint ‖α‖ = 1 by maximising Var(Xα)
‖α‖2

without any constraint

on ‖α‖. Maxima occur at zeroes of:

∂

∂αi

Var(Xα)

‖α‖2 =
2
n

∑
j(X

tX)ijαj

‖α‖2 − 2
Var(Xα)

‖α‖4 αi

Hence any maximising α satisfying ‖α‖ = 1 satisfies:

1

n
(XtX)α = Var(Xα)α

so that solutions α are eigenvectors of 1
n(X

tX) with corresponding eigenvalues Var(Xα).

The first direction v1 maximises Var(Xα) subject to the constraint ‖α‖ = 1. Subsequent

directions vm solve the same maximisation problem subject to the constraint α′Svj = 0 for

j = 1, . . . ,m− 1.

(b) The mth PLSR direction is φ̃m; these are the coefficients such that Zm =
∑r

j=1 φ̃mjX.j .

Now consider the constraints: Y (m−1) is he projection of Y onto the space that is spanned

by Xφ̃m, . . . Xφ̃r so finding the mth direction is equivalent to maximising the expression

with Y (m−1). Then X(m−1) is the projection of X onto the space spanned by Zm, . . . , Zr.

Therefore, with the constraints, the problem is equivalent to finding the unit vector α which

maximises Corr(Y (m−1), X(m−1)α)2Var(X(m−1)α).

Now, Corr(Y,Xα) =
∑n

i=1

∑r
j=1 YiXijαj√

Var(Y )Var(Xα)
and the directions α satisfy ∇F(α) = 0 where

F(α) = Cov(Y,Xα)2

‖α‖2 .

54



∂

∂αj
F(α) = 2Cov(Y,Xα)

∑n
i=1 YiXij

‖α‖2 − 2
Cov(Y,Xα)2αj

‖α‖4

so that, for ‖α‖ = 1, α satisfies:

α =
1

Cov(Y,Xα)
XtY.

This gives the result;

φ̃mj ∝ Cov(Y (m−1), X
(m−1)
.j ).

From the expression in the question, we see that the object to be maximised is Var(Xα),

just as for PCR, but multiplied by Corr(Y,Xα)2, the component which connects the vector

α with the vector Y .

3. Simply match up the terms. Let X = (1n|X1) so that:

(1n|X1)β̂rr = (1n|X̃)β̂(c)
rr

then

β̂rr;01n +X1β̂rr;1 = β̂
(c)
rr;01n + (In −

1

n
1n1

t
n)X1β̂

(c)
rr;1.

β̂rr;01n +X1β̂rr;1 = 1n(β̂
(c)
rr;0 +

r∑

j=1

x.j β̂
(c)
rr;1j) +X1β̂

(c)
rr;1

This gives: β̂
(c)
rr;1 = β̂rr;1 and therefore β̂

(c)
rr;0 = β̂rr;0 −

∑r
j=1 x.j β̂rr;1j .

4.

π(β|y) ∝ π(β)p(y|β) = 1

(2π)p/2τp/2
1

(2π)n/2σn
exp

{
− 1

2τ
|β|2 − 1

2σ2
(Y −Xβ)t(Y −Xβ)

}

(a) Maximum Posterior Estimate Maximising posterior is equivalent to minimising

(Y −Xβ)t(Y −Xβ) +
σ2

τ
|β|2

so it is equivalent to a ridge parameter of k = σ2

τ .
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(b) Mean Posterior Estimate In the case of the Gaussian distribution, the mean posterior

and maximum posterior estimates are the same.

We’ll now show this - and in the process we’ll recover the posterior distribution for β.

π(β|Y ) ∝ exp

{
− 1

2τ
Q

}

where

Q = (Y −Xβ)′(Y −Xβ) +
σ2

τ
|β|2 = β′

(
X ′X +

σ2

τ

)
β − 2β′X ′Y + Y ′Y

Let A = X ′X+ σ2

τ I. This is symmetric and invertible and positive definte. For A = PDP t,

let D1/2 denote the diagonal matrix with positive square roots of elements of D and let

A1/2 = PD1/2P t then

Q = β′A1/2A1/2β − 2β′A1/2A−1/2X ′Y + Y ′XA−1X ′Y − Y ′XA−1X ′Y + Y ′Y,

which is

Q = (β′A1/2 − Y ′XA−1/2)(A1/2β −A−1/2X ′Y ) + Y ′(I −XA−1X ′)Y = (i) + (ii).

The first part is equal to:

(i) = (β′ − Y ′XA−1)A(β −A−1X ′Y ).

This gives us everything, since π(β|Y ) is a density (and hence integrates up to 1 so that

π(β|Y ) =
1

(2πτ)p/2|A|1/2 exp{−
1

2τ
(β′ − Y ′XA−1)A(β −A−1X ′Y )}

so the mean posterior estimate is:

E[β|Y ] =: β̂MEP = A−1X ′Y = (X ′X +
σ2

τ
I)−1X ′Y

which is the same as the MAP, which is β̂rr with ridge parameter k = σ2

τ .

5. The OLS estimator for the augmented problem is the minimiser of

(Y ∗ −X∗β)t(Y ∗ −X∗β) = Y tY − 2Y tXβ + βt(XtX + kI)β

and is therefore the solution to the ridge regression problem with ridge parameter k.
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6. X = (1n|x|x) hence the estimates solve:




n+ k nx nx

nx nx2 + k nx2

nx nx2 nx2 + k







β̂0

β̂1

β̂2


 =




ny

nxy

nxy




This equation has unique solution and the result is clear from this formulation; directly from this

(subtract second row from third) k(β̂2− β̂1) = 0. Let γ̂0, γ̂1 denote the estimated parameters for

the problem with X = (1n|x), then (clearly) γ̂0 = β̂0 and β̂1 = β̂2 =
γ̂1
2 .

7. Rearrange X so that the jth column is the last column and denote the jth column by x. Let

X1 denote the matrix such that X = (X1|x). Then the minimisation problem is: find βt
1, γj , γ

∗
j

which minimise

(Y −X1β1 − x(γj + γ∗))t(Y −X1β1 − x(γj + γ∗))

subject to the constraint

∑

i

|β1i|+ |γj |+ |γ∗| ≤ t.

This is the same optimisation problem as the original, with βj = γj + γ∗,

so the solutions of interest are: β1 same as before and a = γj + γ∗ so that:

(γ̂∗, γ̂j) = ((1− α)a, αa) : |α||a|+ |1− α||a|+
∑

i

|β1i| ≤ t.

In particular, if |a|+
∑

i |β1i| = t, then α ∈ [0, 1].

8. (a) The Lagrange multiplier technique states: find β which minimises

L(β) = (Y −Xβ)t(Y −Xβ) + ν
∑

(β+
i + β−

i ) +
∑

ν+i β
+
i +

∑
ν−i β

−
i

where for each i, βi = β+
i −β−

i and the values of ν+i , ν−i are chosen to satisfy the constraints

of β+
i ≥ 0, β−

i ≥ 0. Then:

0 = 2(XtX)j.β + 2Y tX.j + (ν + ν+j )1(βj > 0)− (ν + ν−j )1(βj < 0)

and matching this up with the minimiser of the Lagrangian of the stated problem gives that

a valid choice of ν, ν+i , ν−i is:

ν = λ, ν+i = 0 βi > 0, ν−i = 0 βi < 0

as required.
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(b) The fact that λ+
j ≥ 0 and λ−

j ≥ 0 for each j follows from the fact that the minimiser exists.

The fact that one of these three possibilities holds is then clear.

(c) This follows directly from the previous part.

(d) Recall that ∇L(β) = −2X ′(Y −Xβ). The residuals are: R = Y −Xβ̂ and, using ∂
∂βj

L(β) =

−λ for βj > 0 and λ for βj < 0, we have

2(XtR)j = −λsgn(βj).

Hence, for each j, using the fact that the columns of X have been centred and standardised:

Corr(X.,j , R) = − λ

2n
√

Var(R)
sgn(βj)

(e) For the active predictors,

2(X.,j , Y )−
∑

k

∑

l

XkjXklβ̂l(λ) =

{
λ

−λ

depending on the sign of the active predictor. Hence linear, hence the result.
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