
Chapter 2

Least Squares Regression: Biased

Regression Methods

2.1 Introduction

This chapter deals with Gaussian regression models. The techniques considered fall under the umbrella

of biased regression methods, which are useful in situations where there are many explanatory variables,

but there is ill-conditioning of the (XtX) matrix since the columns Xj. : j = 1, . . . , r have strong linear

dependence. The matrix XtX may be singular. In this chapter, principal component regression

and partial least squares regression are considered; in the next, penalised techniques, such as ridge

regression, least angle regression and LASSO are considered.

Regularised regression (in particular Lasso), enables us to select a subset of the explanatory vari-

ables as does least-angle regression, which is an automatic variable selection method, which improves

the forward stepwise technique.

2.2 The Generalised Inverse

Recall that the basic equation for multiple linear regression is

Y = Xβ + ǫ

where β is a p-vector of unknown parameters, X is an n × p design matrix and ǫ ∼ N(0, σ2I). The

assumption of Gaussian errors may be relaxed, but if we assume that ǫ1, . . . , ǫn are independent, mean

0 and each with variance σ2, then we estimate the parameters by ordinary least squares (OLS) to

obtain the OLS estimator; β̂OLS minimises

(Y −Xβ)t(Y −Xβ).

Any β which satisfies the so called normal equation
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26 CHAPTER 2. LEAST SQUARES REGRESSION: BIASED REGRESSION METHODS

(XtX)β = XtY

gives a minimum; this is the OLS (ordinary least squares) estimate. If XtX is invertible, the OLS

estimator is unique and:

β̂OLS = (XtX)−1XtY.

In many situations, for example chemometrics (e.g. food research, environmental pollution studies) it

is often the case that the number of variables exceeds the number of observations, so that (XtX) is

not invertible.

In experimental design, it is often very useful to consider an over parametrised model, where the

parameters have an intuitive interpretation. For example, consider the model:

Yij = α+ βi + ǫij

where ǫij ∼ N(0, σ2) are independent of each other, α is an overall average and βi is the effect of

treatment i. There are m different treatments and ni experimental units subject to treatment i. For

example, consider n1 = 2, n2 = 2, n1 = 1, so that n = 5 (the total number of experimental units). As

a linear model, this may be written as

Y = Xβ + ǫ

where this is short-hand for:




Y1

Y2

Y3

Y4

Y5




=




1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1







α

β1

β2

β3




+




ǫ1

ǫ2

ǫ3

ǫ4

ǫ5




where the observations and errors have been put into vectors and relabelled.

Here X is a 5× 4 matrix of rank 3. Clearly XtX is not invertible.

Suppose that X is n × r, but is of rank t where t < r. Then XtX does not have an inverse. A

generalised inverse G always exists.

Definition 2.1 (Generalised Inverse). A generalised inverse G of a matrix A is a matrix that satisfies:

AGA = A.

Lemma 2.2. Let A be a symmetric n× n matrix of rank r ≤ n. There exists a generalised inverse.
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Proof By rearranging the rows and columns of A, it may be written as

(
A11 A12

A21 A22

)
where A11 is

an r × r matrix of rank r. Let

G =

(
A−1

11 0

0 0

)

then an elementary computation yields: AGA = A.

In cases where XtX is not invertible, any generalised inverse G of XtX gives a solution to the normal

equations: β̂ = GXtY , but the solution is not unique. The estimation, however, is unique for estimable

functions:

Lemma 2.3. Let vt be a linear combination of the rows of X. For such a v, the function vtβ is said

to be estimable. For estimable functions, the OLS estimator vtβ̂ is uniquely defined.

Proof Let G1 and G2 be any two generalised inverses of XtX. Let β̂1 = G1X
tY and β̂2 = G2X

tY .

Then, since XtXβ̂i = XtY for i = 1, 2,

0 = (XtX)(β̂1 − β̂2)

and hence for any linear combination λt of the rows of XtX, λtβ̂1 = λtβ̂2 and hence for any vector

v = Xλ for some λ and linear combinations of such. The result follows.

Going back to the example from experimental design, we can see that α (the ‘overall’ average) is not

estimable; it cannot be obtained in this way. But α+βi is estimable for i = 1, 2, 3. These correspond to

the average value for the outcome from treatments 1, 2, 3 respectively. Also, β1 − β2 (the difference in

average outcome from using treatments 1 and 2) is estimable; vt = (1, 1, 0, 0)−(1, 0, 1, 0) = (0, 1,−1, 0)

gives vtβ = β1 − β2, where β = (α, β1, β2, β3)
t.

2.2.1 Moore-Penrose Generalised Inverse

One way (an obvious way) to obtain a generalised inverse is as follows: let V be the orthonormal

matrix and Λ the diagonal matrix, with entries λ1 ≥ λ2 ≥ . . . such that

XtX = V ΛV t.

and let Λ = diag(λ1, . . . , λr). Then XtX = V ΛV t and, if λr > 0, the inverse is well defined and

satisfies: (XtX)−1 = V Λ−1V t.

Now consider the situation where λ1 ≥ . . . ≥ λt > 0 and λt+1 = . . . = λr = 0. Let

V = (v1| . . . |vr)
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and let Ṽ = (v1| . . . |vt). While there is a whole family of generalised inverses, the Moore-Penrose

generalised inverse is uniquely defined. If XtX is of rank t, its Moore-Penrose generalised inverse is

defined as:

G = Ṽ Λ̃−1Ṽ t.

where Λ̃ = diag(λ1, . . . , λt). It is clear that this is a generalised inverse since

(XtX) = (Ṽ |V̂ )

(
Λ̃ 0

0 0

)(
Ṽ t

V̂

)
= Ṽ ΛṼ .

The generalised-inverse regression estimator is:

β̂gir = GXtY.

In the absence of further information, the Moore-Penrose generalised inverse is the default option in

the software. The fitted values are Ŷgir = Xβ̂gir.

The fitted values are estimators of µ, the mean vector and these are always estimable (since each

mean is obtained from an individual row of X). As indicated above, each choice of generalised inverse

gives the same answer when computing the OLS estimates of estimable functions. The estimator β̂gir

minimises the error sum of squares within the t dimensional subspace spanned by Ṽ := (v.1| . . . |v.t).

The estimator is conditionally unbiased. That is, if XtX is of rank t, then it is unbiased. If XtX is of

rank greater than t, then the estimator is biased.

2.3 Principal Component Regression

In many situations, XtX may be invertible, but some eigenvalues may be small. This can lead to

instability since, for the estimator β̂ = (XtX)−1XtY , the covariance is Cov(β̂) = σ2(XtX)−1, so low

eigenvalues of XtX can lead to a large variance for some vtβ̂ where v is a unit vector.

One attempt to deal with this is the so-called Principal Component regression, PC regression.

Firstly, ‘principal component’ needs to be defined. For random variables, the covariance matrix Σ

of a p-variate random vector X = (X1, . . . , Xp)
t can be decomposed as: Σ = PΛP t, where P is an

orthonormal p × p matrix and Λ is a diagonal matrix Λ = diag(λ1, . . . , λp) where λ1 ≥ . . . ≥ λp ≥ 0.

Let Y = P tX, then Cov(Y ) = Λ. The random variables (Y1, . . . , Yp) are the principal components of

X. Note that

Yj =

p∑

k=1

XkPkj .
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Now consider an n× p data matrix X, with n p-variate observations. The empirical covariance matrix

is the matrix S with entries:

Sij =
1

n− 1

n∑

k=1

(Xki −X .i)(Xkj −X .j).

A decomposition into principal components can be carried out on a covariance matrix:

S = V DV t

where V is orthonormal, D = diag(d1, . . . , dp) arranged in decending order: d1 ≥ d2 ≥ . . . ≥ dp ≥ 0.

Let

Z = XV

then Z is an n× p data matrix with empirical covariance D.

To carry out a PC regression, we first centre Y and X by subtracting the column means from each

entry. These are stored; it implies that, in the analysis, for a model

Y = β0 +
r∑

j=1

βjxj + ǫ,

β0 = 0. Let SXX denote the covariance matrix for X. After centring, XtX = (n− 1)SXX .

The technique of PCR is described and it is shown to be equivalent to using β̂ = Ṽ Λ̃−1Ṽ tXtY when

the number of eigenvalues used corresponds to the number of principal components.

Firstly, having centred both Y and X, make the singular value decomposition XtX = V ΛV t where

Λ = diag(λ1, . . . , λr) and λ1 ≥ . . . ≥ λr ≥ 0. Take the t largest eigenvalues, where t is chosen

according to a criterion for example
∑t

j=1
λj∑r

j=1
λj

≥ 0.9 (the principal components account for over 90% of

the variation) and let Ṽ = (v.1| . . . |v.t), the first t columns of V .

Let Z = XṼ . The entries of Z are the scores of the first t principal components of X.

A PC regression is carried out by regressing Y on Z produced in this way (rather than X). The

estimated regression coefficients for the t principal components are:

γ̂pcr = (ZtZ)−1ZtY.

Using Ṽ tṼ = I and Λ̃ = diag(λ1, . . . , λt) (only the restricting to non-zero eigenvalues) gives:

γ̂pcr = (Ṽ tXtXṼ )−1Ṽ tXtY = (Ṽ tV ΛV tṼ )−1Ṽ tXY = Λ̃−1Ṽ tXtY.
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Therefore, in the situation where λ1 ≥ . . . ≥ λt > 0 and λt+1 = . . . = λr = 0:

β̂gir = Ṽ γ̂pcr.

The fitted values turn out to be exactly the same for PCR and for GIR when the Moore-Penrose

generalised inverse of rank t is used:

Ŷpcr = Zγ̂pcr = XṼ (Λ−1Ṽ tXtY ) = Xβ̂gir = Ŷgir.

Having computed γ̂pcr, the coefficients when regression is performed on the transformed variables, it

is usual to transform them into coefficients of the original input variables. Given the t vector γ̂
(t)
pcr, set

β̂pcr = Ṽ γ̂pcr.

In practise, the rank of XtX and hence the number of components is an unknown metaparameter to be

determined from the data. The number of components may be determined (for example) by Kaiser’s

criterion.

Warning PCR attempts to related Y to X when there is severe collinearity. It may fail dramatically.

The extraction of the principal components of X is made without any reference to Y . There is therefore

no reason to suppose that Y is highly correlated with any of the principal components selected; indeed,

Y may have its highest correlation with the components that have been dropped from the analysis.

2.3.1 Shrinkage Methods

In this notation, the biased estimators considered here are all of the form

β̂ = V (FΛ−1)V tXtY,

where F = diag(f1, . . . , fr) fj is the jth shrinkage factor, with the convention that if fj = 0 then

λ−1
j fj = 0. For example, for a t component PCA regression, fj = 1 for j = 1, . . . , t and fjλ

−1
j = 0 for

j ≥ t+ 1.

2.4 Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is an attempt to deal with the deficiency of PCR. Factors are

constructed out of the regressor variables, which are useful for predicting Y , the response. Therefore,

while PCR only uses the X variables to construct factors, PLSR uses both X and Y to determine the

factors.

PLSR describes a family of techniques; PLSR is usually obtained by an algorithm rather than

an optimisation procedure. The result is a sequence of prediction models M1,M2, . . . which give
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increasingly accurate predictions of the output variable Y . The ‘best’ PLSR model is the one that

minimises a cross-validation estimate of the prediction error.

The question of whether or not the cross-validation criterion selects the best model and in what

sense is still an open problem. The PLSR algorithm of Wold, Martens, and Wold (2002) is now given.

In the following, variances and covariances refer to the statistical variances and covariances, which are

easily calculated when the columns are centred.

The following algorithm reduces the regression problem to a series of simple regression problems,

choosing the ‘best’ one-dimensional regressor (a linear combination of the variables availble) at each

stage.

Recall that, for a simple linear regression problem yj = α+ βxj + ǫ,

XtX =

(
n nx

nx nx2

)

so that

(XtX)−1 =
1

nVar(x)

(
x2 −x

−x 1

)
.

Recall, for OLS regression,

β̂ = (XtX)−1XtY

and for simple linear regression, this reduces to:

(
α̂

β̂

)
=

1

Var(x)

(
x2y − xxy

Cov(x, y)

)
.

Here Var(x) = 1
n

∑n
j=1(xj − x)2 and Cov(x, y) = 1

n

∑n
j=1(xj − x)(yj − y).

If the variables have been centred, then α = 0 and the estimate of β may be expressed as:

β̂ =
Cov(x, y)

Var(x)
.

At each stage of PLSR, we choose a linear combination of the columns of X which is orthogonal

to previous choices, which has maximum correlation with the response variable Y . The algorithm

proceeds as follows:

1. Standardise the columns of the n × r design matrix X so that each column has mean 0 and

standard deviation 1. Let y = 1
n

∑n
j=1 Yj (average before centring). Centre the n-vector Y (the

response vector) by subtracting y from each entry, so that it has mean 0. Set X(0) = X (after

centring and standardising) and Y (0) = Y (after centring).

Note Since the columns have been standardised, Var(X.i) = 1 for each column i = 1, . . . , r.

2. For k = 1, . . . , t
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• For j = 1, . . . , r regress Y (k−1) on X
(k−1)
.j (simple linear regression) to get the OLS regression

coefficient:

β̂k−1,j =
Cov(X

(k−1)
.j , Y (k−1))

Var(X
(k−1)
.j )

Since we have centred the columns, for vectors x and y, Cov(x, y) = 1
n

∑
xjyj =

1
n
xty and

Var(x) = 1
n
xtx = 1

n

∑
x2j .

• Having carried out the simple linear regression for each of the covariates, we take a suitable

convex combination of these. We compute the weighted average

Zk =
r∑

j=1

wk−1,j β̂k−1,jX
(k−1)
.j

as a predictor of Y (k−1) where we choose weights wk−1,j ∝ Var(X
(k−1)
.j ). That is, we take

the relative value, or weight, of predictor variable j proportional to the variance of X
(k−1)
.j

Thus:

Zk ∝

r∑

j=1

(
Cov(X

(k−1)
.j , Y (k−1))

)
X

(k−1)
.j .

Since the columns of X have been centred, the covariance is simply the inner product: for

a centred n-vector x and an n-vector y, Cov(x, y) := 1
n

∑n
i=1 xiyi.

• Regress Y (k−1) on Zk to get the OLS regression coefficient

θ̂k =
Cov(Zk, Y

(k−1))

Var(Zk)

and the residual vector

Y (k) := Y (k−1) − θ̂kZk.

• For j = 1, . . . , r regress X
(k−1)
.j on Zk to get the OLS regression coefficient:

φ̂kj =
Cov(Zk, X

(k−1)
.j )

Var(Zk)

and residual vector

X
(k)
.j := X

(k−1)
.j − φ̂kjZk.

Stop when Cov(X
(k)
.j , Y (k)) = 0 for each j = 1, . . . , r.

3. The PLSR function fitted with t components is, therefore, given by:

Ŷ
(t)
plsr = y1n +

t∑

k=1

θ̂kZk.
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Empirical studies strongly suggest that PLSR gives better results than PCR; for similar prediction

accuracy, fewer components are needed and that both PCR and PLSR are substantially better than

OLS when there is ill conditioning in the X matrix.


