
Chapter 10

Bagging, Boosting and Random Forests

10.1 Bagging

Bagging is an acronym for bootstrap aggregating. As before, we start with a learning set L = {(Xi, Yi) :

i = 1, 2, . . . , n}. The bagging procedure starts by drawing B bootstrap samples from L; samples

obtained with replacement. Denote the bootstrap samples by:

L∗b = {(X∗b
i , Y ∗b

i) : i = 1, . . . , n} b = 1, 2, . . . , B.

10.1.1 Bagging Tree-Based Classifiers

Now consider classification, where Yi ∈ {1, . . . ,K} is a class label attached to Xi. We grow a classi-

fication tree T ∗b from the bth bootstrap sample L∗b. To reduce bias, we grow the tree large without

pruning. Suppose (X,Y) is independently drawn from the same distribution, then drop X down each

of the bootstrap trees and take the class that appears most often. This classification procedure is

known as the majority-vote rule.

Number of different observations used in a bootstrap sample The probability that a given

observation is not used in a bootstrap sample is
(
1− 1

n

)n
≃ e−1 ∼ 0.368, so approximately 36.8%

of observations are unused in a bootstrap sample. Let L\L∗b denote observations of L not used in

bootstrap sample b. These are known as the OOB (out of bag) observations. The OOB observations

will function as an independent test set.

For each OOB observation for bootstrap sample b, drop Xi dnown the classification tree L∗b.

Suppose there are ni trees for which Xi is OOB. Drop Xi down each of these trees and, for the K

classes, compute p̂k(xi) : i = 1, . . . ,K the proportions of trees which classify xi as class k, k = 1, . . . ,K.

Then

Cbag(xi) = arg maxkp̂k(xi).

179

180 CHAPTER 10. BAGGING, BOOSTING AND RANDOM FORESTS

If yi is the class variable for observation (xi, yi), then the misclassification rate is

PEbag =
1

n

n∑

i=1

1(Cbag(xi) 6= yi).

10.1.2 Bagging Regression-Tree Predictors

For regression, Yi ∈ R. From the bth bootstrap sample L∗b we grow a regression tree T ∗b and obtain

the predictor µ̂∗b(x). We drop x down each of the B regression trees and then average the predictions

µ̂bag(x) =
1

B

B∑

b=1

µ̂∗b(x).

This is the bagged estimate of Y .

To evaluate the predictive abilities of a bagged regression estimate, we again use the OOB approach.

Let (xi, yi) ∈ L. We drop xi down each of the ni bootstrap trees for which xi is OOB. The OOB

regression estimate µ̂bag(xi) is found by averaging the ni bootstrap predicted values.

That is:

µ̂bag(xi) =
1

ni

∑

b∈Ni

µ̂∗b(xi)

where Ni is the set of ni bootstrap samples that do not contain (xi, yi). We then estimate the generalised

error of the bagged estimate by the OOB error rate:

PEbag =
1

n

n∑

i=1

(Yi − µ̂bag(xi))
2

which is computed as the mean squared error between the bagged estimates and their true response

values.

10.2 Boosting

The aim of boosting is to enhance the accuracy of a weak binary classification learning algorithm. It

derives from ‘Probably Approximately Correct’ learning from machine learning.

We define a weak (or base) classifier to be one that correctly classifies slightly more than 50% of the

time (i.e. a little better than random guessing). Suppose that we have M base classifiers C1, . . . , CM

(where Cj(x) is the class that classifier j assigns to a value x). For an observation X = x, the boosted

classifier is given by:

Cα(x) = sign(fα(x))

10.2. BOOSTING 181

where

fα(x) =
M∑

j=1

(
α∑
j′ αj′

)
Cj(x)

and α = (α1, . . . , αM)′ is an M -vector of constant coefficients.

Example We consider junk email. Suppose we have various classifiers to decide whether or not an

email is junk. Let e denote a particular email that has just arrived and suppose we have various

classifiers based on a single word: ‘money’, ‘free’, ‘order’ ‘credit’ respectively classify email as junk.

Let 1 denote junk and −1 denote serious email.

C1(e) =

{
1 contains word ‘money’

−1 otherwise

C2(e) =

{
1 contains word ‘free’

−1 otherwise

C3(e) =

{
1 contains word ‘order’

−1 otherwise

C4(e) =

{
1 contains word ‘credit’

−1 otherwise

We may combine these classifiers with non-negative weights summing to 1. For example, suppose we

give weights 0.2, 0.1, 0.4, 0.3 respectively to the 4 classifiers, then set

f(e) = 0.2C1(e) + 0.1C2(e) + 0.4C3(e) + 0.3C4(e).

The classification we give to an email e is signf(e). If it contains the words ‘money’, ‘order’ and

‘credit’, we give it a score f(e) = 0.2− 0.1 + 0.4 + 0.3 = 0.8 and assign it to the class ‘spam’.

ADABOOST - Adaptive Boosting The ADABOOST algorithm for binary classification is:

• Input L = {(xi, yi) : i = 1, . . . , n}, yi ∈ {−1,+1} C = {C1, . . . , CM} (M weak classifiers). T

number of iterations.

• Initialise weight vector wi − (w11, . . . , wn1)
′ where wi1 =

1

n
.

• For t = 1, . . . , T

– Select a weak classifier Cjt(x) ∈ {−1, 1} from C, jt ∈ {1, . . . ,M} and train it on learning

set L where the ith observation (xi, yi) has (normalised) weight wit, i = 1, . . . , n.

– Compute the weighted prediction error

PEt = PE(wt) = Ew [1(yi 6= Cjt(xi))] =

(
w′
t

1′nwt

)
et

182 CHAPTER 10. BAGGING, BOOSTING AND RANDOM FORESTS

where Ew denotes expertation with respect to the probability distribution wt and et is an

n-vector with ith entry (et)i = 1(Yi 6= Cjt(xi)).

– Set βt =
1

2
log
(
1−PEt

PEt

)

– Update weights

wi,t+1 =
wi,t

Wt

exp{2βt1(Yi 6= Cjt(Xi)) i = 1, . . . , n

where Wt is the normalising constant to make wt+1 a probability distribution.

• Output: signf(x) where f(x) =
∑T

t=1
βtCjt(x) =

∑M
j=1

αjCj(x), αj =
∑T

t=1
βt1(jt = j).

10.3 Random Forests

Random forests start in the same way as bagging starts, with B bootstraps drawn from a learning

set L. The difference is in how trees are grown from those samples. A randomisation component is

introduced so that, for the tree T ∗b, each node is split in a random manner. The algorithm is as follows:

• Input L = {(xi, yi), i = 1, . . . , n}, yi ∈ {1, . . . ,K} (K possible classes), m number of variables to

be chosen at each node (where m << r) and B number of bootstrap samples.

• For b = 1, . . . , B

– Draw a bootstrap sample L∗b from L.

– From L∗b, grow a tree classifier T ∗b using random input selection: at each node, randomly

select a subset m of the r variables and, using only the m randomly chosen variables,

determine the best split at that node, using either entropy or the Gini index. To reduce

bias, grow the tree to a maximum depth with no pruning.

– The tree T ∗b generates an associated random vector θb which is independent of the previous

θ1, . . . , θb−1 and whose form and dimensionality are determined by the context.

– Using θb and an inpute vector x, define a classifier h(x, θb) having a single vote for the class

of x.

• The B randomised tree-structured classifiers {h(x, θb)} are collectively called a random forest.

• Te observation x is assigned to the majority vote-getting class as determined by the random

forest.

The random vector θb basically assigns a class designation (most probable class) to each leaf node of

T ∗b.

10.3. RANDOM FORESTS 183

Let

mb(x, y) =
1

B

B∑

b=1

1(h(x, θb) = y)−max
k 6=y

{
1

B

B∑

b=1

1(h(x, θb) = k)

}

be the classification margin and define the generalisation error for the random forest with B trees as:

PEB = Px,y(mB(x, y) < 0)

If mB(x, y) > 0, then the correct classifiaction is chosen.

mB is an approximation to m defined by:

m(x, y) = PΘ {h(x,Θ) = Y } −max
k 6=Y

P(h(x,Θ) = k),

which is the margin function of the random forest. This is the amount by which the average number

of votes at (x, y) for the correct class exceeds the average vote for any other class.

10.3.1 Bounds on the Generalisation Error

Let µ = EX,Y [m(X,Y)] be the expected ‘strength’ of the classifiers (assumed to be positive). By

strength we mean a measure of accuracy of a tree in the forest. For the binary case,

m(x, y) = 2PΘ(h(x,Θ) = Y)− 1

and µ > 0 ⇒ EX,Y [PΘ(h(X,Θ) = Y) > 0.5. We compute an upper bound for the generalisation error:

PE∗ = PX,Y {|m(X,Y)− EX,Y [m(X,Y)]| > µ}

of a random forest. Chebyshev’s inequality gives:

PE∗ ≤
1

µ2
VarX,Y (m(X,Y))

Let

k̃ = arg maxk 6=Y PΘ(h(X,Θ) = k)

Then

m(X,Y) = PΘ(h(X,Θ) = Y)− PΘ(h(X,Θ) = k̃) = EΘ(m
∗(X,Y,Θ))

where

m∗(X,Y, θ) = 1(h(X, θ) = Y)− 1(h(X, θ) = k̃)

Then

184 CHAPTER 10. BAGGING, BOOSTING AND RANDOM FORESTS

m(X,Y)2 = EΘ,Θ′ [m∗(X,Y,Θ)m∗(X,Y,Θ′)] = EΘ,Θ′ [ρ(Θ,Θ′)σ(Θ)σ(Θ′)]

where, for fixed θ and θ′,

ρ(θ, θ′) = CorrX,Y (m
∗(X,Y, θ),m∗(X,Y, θ′))

is the correlation between the raw margin functions of two different members in the forest and

σ2(θ) = VarX,Y (m
∗(X,Y, θ)).

Θ and Θ′ are independent. Then

VarX,Y (m(X,Y)) = ρEΘ[σ(Θ)]2 ≤ ρEΘ[σ
2(Θ)]

where

ρ =
EΘ,Θ′ [ρ(Θ,Θ′)σ(Θ)σ(Θ′)]

EΘ,Θ′ [σ(Θ)σ(Θ′)]
=

VarX,Y (m(X,Y))

EΘ[σ(Θ)]2
.

With some more work, using EΘ[σ
2(Θ)] ≤ 1− µ2, we can obtain

PE∗ ≤
ρ(1− µ2)

µ2
.

