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Abstract. We prove that any concept in any description logic that ex-
tendsALC with some features amongst I (inverse),Qk (quantified number
restrictions with numbers bounded by a constant k), Self (local reflexivity
of a role) can be learnt if the training information system is good enough.
That is, there exists a learning algorithm such that, for every concept C of
those logics, there exists a training information system consistent with C
such that applying the learning algorithm to the system results in a con-
cept equivalent to C.

1 Introduction

Description logics (DLs) are a family of formal languages suitable for represent-
ing and reasoning about terminological knowledge [1]. They are of particular
importance in providing a logical formalism for ontologies and the Semantic
Web. Binary classification in the context of DLs is called concept learning, as
the function to be learnt is expected to be characterizable by a concept. This
differs from the traditional setting in that objects are described not only by
attributes but also by relationship between the objects (i.e., by object roles).

Concept learning in DLs has been studied in a considerable number of works
(e.g., [3,2,8,7,5,10,11,6]). The work [3] is based on “least common subsumers”,
the works [2,8,7,5] is based on refinement operators as in inductive logic pro-
gramming, and the works [10,11,6] is based on bisimulation in DLs.

PAC-learning (probably approximately correct learning) is a framework for
mathematical analysis of machine learning proposed in 1984 by Valiant [12]. In
this framework, the learner receives samples and must select from a certain class
a hypothesis that approximates the function to be learnt. The goal is that, with
high probability, the selected hypothesis will have low generalization error. The
learner must be able to learn the concept in polynomial time given any arbitrary
approximation ratio, probability of success, or distribution of the samples. PAC-
learnability is an important notion for practical learning algorithms. However, it
is hard to investigate for DLs. We are aware of only the work [3] by Cohen and
Hirsh, which shows PAC-learnability for a very restricted DL called C-CLASSIC.
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In this paper, we study C-learnability (possibility of correct learning) in DLs.
We prove that any concept in any description logic that extends the basic DL
ALC with some features amongst I (inverse), Qk (quantified number restrictions
with numbers bounded by a constant k), Self (local reflexivity of a role) can be
learnt if the training information system is good enough. That is, there exists a
learning algorithm such that, for every concept C of those logics, there exists a
training information system consistent with C such that applying the learning
algorithm to the system results in a concept equivalent to C.

Although C-learnability is somehow weaker than PAC-learnability, our the-
oretical result on C-learnability is still significant for the learning theory in
DLs. Our investigation uses bounded bisimulation in DLs and a new version
of the algorithms proposed in [10,11,6] that minimizes modal depths of resulting
concepts. It shows a good property of the bisimulation-based concept learning
method proposed in [10,11,6].

The rest of this paper is structured as follows. In Section 2 we introduce no-
tation and semantics of DLs. In Section 3 we present concept normalization and
introduce universal interpretations. In Section 4 we define bounded bisimulation
in DLs and state its properties. In Section 5 we present a concept learning algo-
rithm, which is used in Section 6 for analyzing C-learnability in DLs. Concluding
remarks are given in Section 7.

2 Notation and Semantics of Description Logics

A DL-signature is a set Σ = ΣI ∪ΣC ∪ΣR, where ΣI is a finite set of individual
names, ΣC is a finite set of concept names, and ΣR is a finite set of role names.
Concept names are unary predicates, while role names are binary predicates. We
denote concept names by capital letters like A and B, role names by lower-case
letters like r and s, and individual names by lower-case letters like a and b.

We will consider DL-features denoted by I (inverse), Qk (quantified number
restrictions with numbers bounded by a constant k) and Self (local reflexivity of
a role). In this paper, by a set of DL-features we mean an empty set or a set
consisting of some of these names.

Let Σ be a DL-signature and Φ be a set of DL-features. Let L stand for ALC,
which is the name of a basic DL. (We treat L as a language, but not a logic.)
The DL language LΣ,Φ allows roles and concepts defined recursively as follows:

– if r ∈ ΣR then r is role of LΣ,Φ

– if I ∈ Φ then r− is a role of LΣ,Φ

– if A ∈ ΣC then A is concept of LΣ,Φ

– if C and D are concepts of LΣ,Φ, R is a role of LΣ,Φ, r ∈ ΣR, and h, k are
natural numbers then

• �, ⊥, ¬C, C �D, C �D, ∀R.C and ∃R.C are concepts of LΣ,Φ

• if Qk ∈ Φ and h ≤ k then ≥hR.C and <hR.C are concepts of LΣ,Φ

(we use <hR.C instead of ≤hR.C because it is more “dual” to ≥hR.C)
• if Self ∈ Φ then ∃r.Self is a concept of LΣ,Φ.
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�I = ΔI ⊥I = ∅ (¬C)I = ΔI \ CI

(C �D)I = CI ∩DI (C �D)I = CI ∪DI

(∃r.Self)I = {x ∈ ΔI | rI(x, x)}
(∀R.C)I = {x ∈ ΔI | ∀y [RI(x, y) ⇒ CI(y)]}
(∃R.C)I = {x ∈ ΔI | ∃y [RI(x, y) ∧ CI(y)]}

(≥hR.C)I = {x ∈ ΔI | �{y | RI(x, y) ∧ CI(y)} ≥ h}
(<hR.C)I = {x ∈ ΔI | �{y | RI(x, y) ∧ CI(y)} < h}

Fig. 1. Interpretation of complex concepts

An interpretation over Σ is a pair I =
〈
ΔI , ·I〉, where ΔI is a non-empty set

called the domain of I and ·I is a mapping called the interpretation function of
I that associates each individual a ∈ ΣI with an element aI ∈ ΔI , each concept
name A ∈ ΣC with a set AI ⊆ ΔI , and each role name r ∈ ΣR with a binary
relation rI ⊆ ΔI ×ΔI . For r ∈ ΣR, define (r−)I = (rI)−1. The interpretation
function ·I is extended to complex concepts as shown in Figure 1, where �Γ
stands for the cardinality of the set Γ .

An information system over Σ is defined to be a finite interpretation over Σ.
See [10, Examples 19.4-19.6] for examples of information systems in DLs.

A concept C of LΣ,Φ is satisfiable if there exists an interpretation I over Σ
such that CI 
= ∅. We say that concepts C and D of LΣ,Φ are equivalent if
CI = DI for every interpretation I over Σ.

The modal depth of a concept C, denoted by mdepth(C), is defined to be:

– 0 if C is of the form �, ⊥, A or ∃r.Self,
– mdepth(D) if C is of the form ¬D,
– max(mdepth(D),mdepth(D′)) if C is of the form D �D′ or D �D′,
– mdepth(D) + 1 if C is of the form ∀R.D, ∃R.D, ≥hR.C or <hR.C.

Let d denote a natural number. By LΣ,Φ,d we denote the sublanguage of LΣ,Φ

that consists of concepts with modal depth not greater than d.

3 Concept Normalization

There are different normal forms for formulas or concepts (e.g., [9]). We provide
below such a form. The aim is to introduce the notion of universal interpre-
tation and a lemma about its existence. Our normal form uses the following
normalization rules:

– Replace ∀R.C by ¬∃R.¬C. Replace <hR.C by ¬ ≥hR.C.
– Replace ≥0R.C by �.
– Push ¬ in depth through �, ⊥, ¬, �, � according to De Morgan’s laws.
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– Represent C1 � . . . � Cn as an “and”-set �{C1, . . . , Cn} to make the order
inessential and eliminate duplicates. Use a dual rule for � and “or”-sets.

– Flatten an “and”-set �{�{C1, . . . , Ci}, Ci+1, . . . , Cn} to �{C1, . . . , Cn}. Re-
place �{C} by C. Replace �{�, C1, . . . , Cn} by �{C1, . . . , Cn}. Replace
�{⊥, C1, . . . , Cn} by ⊥. Use dual rules for “or”-sets.

– Replace ∃R. � {C1, . . . , Cn} by �{∃R.C1, . . . , ∃R.Cn}.
– Replace ≥hR.�{C1, . . . , Cn} by the disjunction (using �) of all concepts of

the form �{≥h1R.C1, . . . ,≥hnR.Cn}, where h1, . . . , hn are natural numbers
such that h1 + · · · + hn = h.

– Distribute � over �.

A concept is said to be in the normal form if it cannot be changed by any one
of the above rules. The following two lemmas can easily be proved.

Lemma 3.1. Any concept can be transformed to a normal form. If C′ is the
normal form of C then they are equivalent. A concept in the normal form may
contain � only at the most outer level (i.e., either it does not contain � or it
must be of the form �{C1, . . . , Cn}, where C1, . . . , Cn do not contain �).
Lemma 3.2. LΣ,Φ,d has only finitely many concepts in the normal form. All of
them can effectively be constructed.

We say that an interpretation I over Σ is universal w.r.t. a sublanguage of LΣ,Φ

if, for every satisfiable concept C of that sublanguage, CI 
= ∅.

Lemma 3.3. There exists a finite universal interpretation w.r.t. LΣ,Φ,d , which
can effectively be constructed.

Proof. Let C1, . . . , Cn be all satisfiable concepts in the normal form of LΣ,Φ,d .
For each 1 ≤ i ≤ n, let Ii be a finite model satisfying Ci, which can effectively
be constructed using some tableau algorithm. Without loss of generality we
assume that these interpretations have pairwise disjoint domains. Let I be any
interpretation such that: ΔI = ΔI1∪. . .∪ΔIn ; for A ∈ ΣC , AI = AI1∪. . .∪AIn ;
for r ∈ ΣR, rI = rI1 ∪ . . . ∪ rIn . It is easy to see that I is finite and universal
w.r.t. LΣ,Φ,d . �

4 Bounded Bisimulation for Description Logics

Indiscernibility in DLs is related to bisimulation. In [4] Divroodi and Nguyen
studied bisimulations for a number of DLs. In [10] Nguyen and Sza�las general-
ized that notion to model indiscernibility of objects and study concept learning.
In [11,6] Tran et al. and Ha et al. generalized that notion further for concept
learning. In this section, we present bounded bisimulation for the DLs studied
in the current paper in order to investigate C-learnability in those DLs.

Let d be a natural number and let

– Σ and Σ† be DL-signatures such that Σ† ⊆ Σ
– Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ
– I and I ′ be interpretations over Σ.
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A binary relation Zd ⊆ ΔI ×ΔI′
is called an LΣ†,Φ†,d -bisimulation between I

and I ′ if there exists a sequence of binary relations Zd ⊆ · · · ⊆ Z0 ⊆ ΔI ×ΔI′

such that the following conditions hold for every 0 ≤ i ≤ d, 0 ≤ j < d, a ∈ Σ†
I ,

A ∈ Σ†
C , x, y ∈ ΔI , x′, y′ ∈ ΔI′

and every role R of LΣ†,Φ† :

Zi(a
I , aI

′
) (1)

Z0(x, x′) ⇒ [AI(x) ⇔ AI′
(x′)] (2)

[Zj+1(x, x′) ∧RI(x, y)] ⇒ ∃y′ ∈ ΔI′
[Zj(y, y

′) ∧RI′
(x′, y′)] (3)

[Zj+1(x, x′) ∧RI′
(x′, y′)] ⇒ ∃y ∈ ΔI [Zj(y, y

′) ∧RI(x, y)], (4)

if Qk ∈ Φ† and 1 ≤ h ≤ k then

if Zj+1(x, x′) holds and y1, . . . , yh are pairwise different ele-
ments of ΔI such that RI(x, yl) holds for every 1 ≤ l ≤ h then
there exist pairwise different elements y′1, . . . , y′h of ΔI′

such

that RI′
(x′, y′l) and Zj(yl, y

′
l) hold for every 1 ≤ l ≤ h

(5)

if Zj+1(x, x′) holds and y′1, . . . , y′h are pairwise different ele-

ments of ΔI′
such that RI′

(x′, y′l) holds for every 1 ≤ l ≤ h
then there exist pairwise different elements y1, . . . , yh of ΔI

such that RI(x, yl) and Zj(yl, y
′
l) hold for every 1 ≤ l ≤ h,

(6)

if Self ∈ Φ† then

Z0(x, x′) ⇒ [rI(x, x) ⇔ rI
′
(x′, x′)]. (7)

An interpretation I over Σ is finitely branching (or image-finite) w.r.t. LΣ†,Φ†

and LΣ†,Φ†,d if, for every x ∈ ΔI and every role R of LΣ†,Φ† , the set {y ∈ ΔI |
RI(x, y)} is finite.

Let x ∈ ΔI and x′ ∈ ΔI′
. We say that x is LΣ†,Φ†,d -equivalent to x′ if, for

every concept C of LΣ†,Φ†,d , x ∈ CI iff x′ ∈ CI′
.

Theorem 4.1 (The Hennessy-Milner Property). Let d be a natural num-
ber, Σ and Σ† be DL-signatures such that Σ† ⊆ Σ, Φ and Φ† be sets of DL-
features such that Φ† ⊆ Φ. Let I and I ′ be interpretations in LΣ,Φ, finitely

branching w.r.t. LΣ†,Φ† and such that for every a ∈ Σ†
I , a

I is LΣ†,Φ†,d -equivalent

to aI
′
. Then x ∈ ΔI is LΣ†,Φ†,d -equivalent to x′ ∈ ΔI′

iff there exists an
LΣ†,Φ†,d -bisimulation Zd between I and I ′ such that Zd(x, x′) holds.

This theorem can be proved analogously to [4, Theorem 4.1].
An LΣ†,Φ†,d -bisimulation between I and itself is called an LΣ†,Φ†,d -auto-

bisimulation of I. An LΣ†,Φ†,d -auto-bisimulation of I is said to be the largest if
it is larger than or equal to (⊇) any other LΣ†,Φ†,d -auto-bisimulation of I.

Given an interpretation I over Σ, by ∼Σ†,Φ†,d,I we denote the largest
LΣ†,Φ†,d -auto-bisimulation of I, and by ≡Σ†,Φ†,d,I we denote the binary re-
lation on ΔI with the property that x ≡Σ†,Φ†,d,I x′ iff x is LΣ†,Φ†,d -equivalent
to x′.
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Theorem 4.2. Let d be a natural number, Σ and Σ† be DL-signatures such
that Σ† ⊆ Σ, Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ, and I be an in-
terpretation over Σ. Then the largest LΣ†,Φ†,d -auto-bisimulation of I exists and
is an equivalence relation. Furthermore, if I is finitely branching w.r.t. LΣ†,Φ†

then the relation ≡Σ†,Φ†,d,I is the largest LΣ†,Φ†,d -auto-bisimulation of I (i.e.
the relations ≡Σ†,Φ†,d,I and ∼Σ†,Φ†,d,I coincide).

This theorem differs from the ones of [10,11,6] in the considered languages. It
can be proved analogously to [4, Proposition 5.1 and Theorem 5.2].

We say that a set Y is divided by a set X if Y \X 
= ∅ and Y ∩X 
= ∅. Thus, Y
is not divided by X if either Y ⊆ X or Y ∩X = ∅. A partition P = {Y1, . . . , Yn}
is consistent with a set X if, for every 1 ≤ i ≤ n, Yi is not divided by X .

Theorem 4.3. Let d be a natural number, Σ and Σ† be DL-signatures such that
Σ† ⊆ Σ, Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ, I be an interpretation
over Σ, and let X ⊆ ΔI . Then:

1. if there exists a concept C of LΣ†,Φ†,d such that X = CI then the partition
of ΔI by ∼Σ†,Φ†,d,I is consistent with X

2. if the partition of ΔI by ∼Σ†,Φ†,d,I is consistent with X then there exists
a concept C of LΣ†,Φ†,d such that CI = X.

This theorem differs from the ones of [10,11,6] in the considered languages (and
the studied class of DLs). It can be proved analogously to [10, Theorem 4].

5 A Concept Learning Algorithm

Let A0 ∈ ΣC be a concept name standing for the “decision attribute” and
suppose that A0 can be expressed by a concept C in LΣ†,Φ† , where Σ† ⊆ Σ \
{A0} and Φ† ⊆ Φ. Let I be a training information system over Σ. How can
we learn that concept C on the basis of I ? In [10] Nguyen and Sza�las gave a
bisimulation-based method for this learning problem. In this section, by adopting
a specific strategy we present a modified version of that method, called the
MiMoD (minimizing-modal-depth) concept learning algorithm. This algorithm
is used for analyzing C-learnability in the next section. It may not give high
accuracy for general cases.

Our MiMoD algorithm is as follows:

1. Starting from the partition {ΔI}, make subsequent granulations to reach
a partition consistent with AI

0 . In the granulation process, we denote the
blocks created so far in all steps by Y1, . . . , Yn, where the current partition
may consist of only some of them. We do not use the same subscript to denote
blocks of different contents (i.e. we always use new subscripts obtained by
increasing n for new blocks). We take care that, for each 1 ≤ i ≤ n, Yi is
characterized by a concept Ci such that Yi = CI

i .
2. We use the following concepts as selectors for the granulation process, where

1 ≤ i ≤ n:
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(a) A, where A ∈ Σ†
C

(b) ∃r.Self, if Self ∈ Φ† and r ∈ Σ†
R

(c) ∃r.Ci, where r ∈ Σ†
R

(d) ∃r−.Ci, if I ∈ Φ† and r ∈ Σ†
R

(e) ≥h r.Ci, if Qk ∈ Φ†, r ∈ Σ†
R and 1 ≤ h ≤ k

(f) ≥h r−.Ci, if {Qk, I} ⊆ Φ†, r ∈ Σ†
R and 1 ≤ h ≤ k.

A selector D has a higher priority than D′ if mdepth(D) < mdepth(D′).
3. During the granulation process, if

– a block Yi of the current partition is divided by DI , where D is a selector,

– and there do not exist a block Yj of the current partition and a selector
D′ with a higher priority than D such that Yj is divided by D′

then partition Yi by D as follows:

– s := n + 1, t := n + 2, n := n + 2

– Ys := Yi ∩DI , Cs := Ci �D

– Yt := Yi ∩ (¬D)I , Ct := Ci � ¬D
– replace Yi in the current partition by Ys and Yt.

4. When the current partition becomes consistent with AI
0 , return Ci1�. . .�Cij ,

where i1, . . . , ij are indices such that Yi1 , . . . , Yij are all the blocks of the
current partition that are subsets of AI

0 .

Observe that the above algorithm always terminates.
See [10, Examples 19.7 and 19.8] for examples on concept learning in DLs.

Lemma 5.1. Let Σ and Σ† be DL-signatures such that Σ† ⊆ Σ, Φ and Φ† be
sets of DL-features such that Φ† ⊆ Φ, and I be an interpretation over Σ. Suppose
A0 ∈ ΣC \ Σ†

C and C is a concept of LΣ†,Φ† such that AI
0 = CI . Let C′ be the

concept returned by the MiMoD algorithm for I. Then C′ is a concept of LΣ†,Φ†

such that C′I = CI and mdepth(C′) ≤ mdepth(C).

Proof. Clearly, C′I = AI
0 = CI . Consider the execution of the MiMoD algorithm

on I that results in C′. By Pd we denote the partition of ΔI at the moment
in that execution when max{mdepth(Ci) | Yi ∈ Pd} = d and Pd cannot be
granulated any more without using some selector with modal depth d + 1. Let
dmax be the maximal value of such a d. Let Zd be the equivalence relation
corresponding to the partition Pd, i.e. Zd = {〈x, x′〉 | x, x′ ∈ Yi for some Yi ∈
Pd}. It is straightforward to prove by induction on d that Zd is an LΣ†,Φ†,d -auto-
bisimulation of I. Hence, Zd ⊆ ∼Σ†,Φ†,d,I. Since each block of Pd is characterized
by a concept of LΣ†,Φ†,d , Zd is a superset of ≡Σ†,Φ†,d,I . Since ≡Σ†,Φ†,d,I and
∼Σ†,Φ†,d,I coincide (Theorem 4.2), we have that Zd = ≡Σ†,Φ†,d,I .

Since the algorithm terminates as soon as the current partition is consistent
with CI , it follows that dmax ≤ mdepth(C). Furthermore, if dmax < mdepth(C′)
then we also have dmax < mdepth(C). Since mdepth(C′) ≤ dmax+1, we conclude
that mdepth(C′) ≤ mdepth(C). �
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6 C-Learnability in Description Logics

Theorem 6.1. Let d be a natural number, Σ and Σ† be DL-signatures such
that Σ† ⊆ Σ, Φ and Φ† be sets of DL-features such that Φ† ⊆ Φ, and I be a
finite universal interpretation w.r.t. LΣ†,Φ†,d . Suppose A0 ∈ ΣC \ Σ†

C and C
is a concept of LΣ†,Φ†,d such that AI

0 = CI . Then the concept returned by the
MiMoD algorithm for I is equivalent to C.

Proof. Let C′ be the concept returned by the MiMoD algorithm for I. By
Lemma 5.1, C′I = CI and mdepth(C′) ≤ mdepth(C). For the sake of con-
tradiction, suppose C′ is not equivalent to C. Thus, either C �¬C′ or C′�¬C is
satisfiable. Both of them belong to LΣ†,Φ†,d . Since I is universal w.r.t. LΣ†,Φ†,d ,
it follows that either (C � ¬C′)I or (C′ � ¬C)I is not empty, which contradicts

the fact that C′I = CI . �

Theorem 6.2. Any concept C in any description logic that extends ALC with
some features amongst I, Qk, Self can be learnt if the training information sys-
tem is good enough.

Proof. Let the considered logic be LΣ†,Φ† and let d = mdepth(C), Φ = Φ† and

Σ = Σ† ∪ {A0}, where A0 /∈ Σ†
C . By Lemma 3.3, there exists a finite universal

interpretation I ′ w.r.t. LΣ†,Φ†,d . Let I be the interpretation over Σ different

from I ′ only in that AI
0 is defined to be CI′

. Clearly, I is universal w.r.t. LΣ†,Φ†,d
and AI

0 = CI . By Theorem 6.1, the concept returned by the MiMoD algorithm
for I is equivalent to C. �

7 Concluding Remarks

Our Theorem 6.2 given above is a novel interesting result for the concept learning
theory in DLs. For this theorem we have introduced universal interpretations and
bounded bisimulation in DLs and developed the MiMoD algorithm.

As future work, we intend to study C-learnability in other DLs and for the
cases when there is background knowledge like a TBox and/or an RBox.
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