Extending the Description Horn Logic DHL

Linh Anh Nguyen

Institute of Informatics University of Warsaw

CS&P'09

Kraków-Przegorzały, September 2009

2 The Description Horn Logic DHL

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3 Extensions of DHL

- EDHL
- EDHL-Datalog
- GDHL

Description Logics

- Description logics (DLs) are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way.
- DLs describe domain in terms of concepts (classes), roles (relationships) and individuals.
- DLs, as decidable fragments of FOL, have well-defined formal semantics.
- DLs are used as the main formal background for a number of languages used in the semantic web technology, including ontology engineering, reasoning with ontology-based markup (meta-data), service description and discovery.

・ロト ・回ト ・ヨト ・ヨト

Motivations

Problem

- \bullet The data complexity of the DL \mathcal{ALC} is NP-complete.
- $\bullet\,$ It is worth studying formalisms with PTIME data complexity.

Horn Fragments of Logic

- Horn rules are widely used in knowledge representation.
- Horn fragments usually have
 - a lower complexity or data complexity
 - efficient computational methods.

Approaches

- intersection of a DL with the Horn fragment of FOL
- combination of Horn fragments of a DL and FOL

DL Architecture

Knowledge base

• **RBox** (axioms about roles)

 $hasChild \sqsubseteq hasDescendant$ $hasDescendant \circ hasDescendant \sqsubseteq hasDescendant$ $hasParent = hasChild^-$

• **TBox** (definitions of concepts and terminological axioms)

 $Parent = \exists hasChild. \top$ $Father = Parent \sqcap Male$ $Mother = Parent \sqcap Female$

• ABox (assertions about instances)

John : Father Mary : Mother hasChild(John, Jack)

- Inference system
- Interface

白 ト く ヨ ト く ヨ ト

Description Logic SHI (1)

Syntax	Example	Semantics w.r.t. $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$
а	John	$a^\mathcal{I} \in \Delta^\mathcal{I}$
A	Human	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
r	hasChild	$r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$
r	hasChild	$\mid (r^{-})^{\mathcal{I}} = \{(x,y) \mid (y,x) \in r^{\mathcal{I}}\}$
We use letters like R , S to denote a role of the form r or r^- .		
$C \sqcap D$	Human ⊓ Male	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
$C \sqcup D$	<i>Mother</i> ⊔ <i>Father</i>	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
$\neg C$	$\neg Male$	$ \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
$\exists R.C$	∃hasChild.Human	$ \{x \mid \exists y.(x,y) \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} $
$\forall R.C$	$\forall has Child. Doctor$	$ \{x \mid \forall y.(x,y) \in \mathcal{R}^{\mathcal{I}} \to y \in \mathcal{C}^{\mathcal{I}} \} $

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Description Logic SHI (2)

RBox (axioms about roles)

Syntax	Example	Semantics w.r.t. \mathcal{I}
$R \sqsubseteq S$	$hasChild \sqsubseteq hasDescendant$	$R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
$R \circ R \sqsubseteq R$		$R^{\mathcal{I}}$ is transitive

TBox (terminological axioms)

Syntax	Example	Semantics w.r.t. \mathcal{I}
$C \sqsubseteq D$	$Mother \sqsubseteq Parent$	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
C = D	$Parent = Mother \sqcup Father$	$C^{\mathcal{I}} = D^{\mathcal{I}}$

ABox (assertions)

Syntax	Example	Semantics w.r.t. \mathcal{I}
a : A	John : Father	$a^{\mathcal{I}} \in A^{\mathcal{I}}$
R(a, b)	hasChild(John, Jack)	$(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$

500

▲□→ ▲目→ ▲目→

The Description Horn Logic DHL

DHL was introduced by Grosof et al. as a fragment of DL SHI with the following restriction:

• a TBox is a finite set of axioms of the form

 $C_b \sqsubseteq C_h$ or $\top \sqsubseteq \forall R.C_h$

where C_b and C_h are defined by the following BNF grammar:

 $C_h ::= A \mid C_h \sqcap C_h \mid \forall R.C_h$ $C_b ::= A \mid C_b \sqcap C_b \mid C_b \sqcup C_b \mid \exists R.\top \mid \exists R.C_b$

・ロト ・回ト ・ヨト ・ヨト

Data Complexity of DHL

The Instance Checking Problem in DHL

Is an individual *a* an **instance** of a concept C_b w.r.t. a DHL knowledge base $(\mathcal{R}, \mathcal{T}, \mathcal{A})$?

• i.e., is $a^{\mathcal{I}} \in C_b^{\mathcal{I}}$ for all model \mathcal{I} of $(\mathcal{R}, \mathcal{T}, \mathcal{A})$?

Data Complexity

The data complexity of the instance checking problem is measured w.r.t. to the size of A, assuming that \mathcal{R} , \mathcal{T} , C_b and a are fixed.

Theorem (Grosof et al)

The instance checking problem in DHL has PTIME data complexity.

・ロン ・回と ・ヨン ・ヨン

EDHL EDHL-Datalog GDHL

Context-Free Description Logic with Inverse Roles ALCI_{cf}

 \mathcal{ALCI}_{cf} extends \mathcal{SHI} by allowing role axioms of the form $R_1 \circ \ldots \circ R_k \sqsubseteq S$

where $k \ge 0$ and the l.h.s. stands for the identity relation if k = 0.

The semantics of such an axiom w.r.t. an interpretation ${\mathcal I}$ is that

 $R_1^{\mathcal{I}} \circ \ldots \circ R_k^{\mathcal{I}} \subseteq S^{\mathcal{I}}$

・ロト ・回ト ・ヨト ・ヨト

EDHL EDHL-Datalog GDHL

The Extended Description Horn Logic EDHL

EDHL extends DHL by allowing role axioms of the form

 $R_1 \circ \ldots \circ R_k \sqsubseteq S$

イロン イヨン イヨン イヨン

EDHL EDHL-Datalog GDHL

EDHL: Example (1)

Consider the binary tree

specified by the following ABox

 $\mathcal{A} = \{ root(a), L(a, b), R(a, c), L(b, d), R(b, e), middle_level(b) \}$

where

- L(x, y) stands for "y is the left successor of x"
- R(x, y) stands for "y is the right successor of x".

EDHL EDHL-Datalog GDHL

EDHL: Example (2)

Let \mathcal{R} be the following RBox:

$L \sqsubseteq S$	$id \sqsubseteq T$
$R \sqsubseteq S$	$S^- \circ T \circ S \sqsubseteq T$

This RBox defines S and T to be the roles such that

- S(x, y) means y is a successor of x
- T(x, y) means x and y are at the same level of the tree.

Note: \mathcal{R} is not a "regular" RBox.

・ロト ・日本 ・モート ・モート

EDHL EDHL-Datalog GDHL

EDHL: Example (3)

Let ${\mathcal T}$ be the TBox consisting of the following axioms:

 $\exists T. \exists S. \top \sqsubseteq inner_level$ $middle_level \sqsubseteq \forall T. middle_level$ $root \sqsubseteq on_left_path$ $\exists L^-.on_left_path \sqsubseteq on_left_path$

which means

$$T(x, y) \land S(y, z) \rightarrow inner_level(x)$$

 $middle_level(x) \land T(x, y) \rightarrow middle_level(y)$
 $root(x) \rightarrow on_left_path(x)$
 $L(y, x) \land on_left_path(y) \rightarrow on_left_path(x)$

EDHL EDHL-Datalog GDHL

EDHL: Example (4)

It can be shown that

- c is an instance of concept middle_level
- a, b and d are instances of concept on_left_path

EDHL EDHL-Datalog GDHL

EDHL: Properties

Datalog

- A Datalog knowledge base consists of
 - extensional part: a set of facts (ground atoms) in FOL
 - **intensional part**: a Datalog program, i.e. a logic program in FOL without negation and function symbols, satisfying the "range-restrictedness" condition.
- A query to a Datalog knowledge base is a conjunction of (relational) atoms. Answers for a query are defined as usual.

Theorem

- The instance checking problem in EDHL is reducible to the query answering problem in Datalog.
- \bullet The instance checking problem in EDHL has PTIME data complexity.

EDHL EDHL-Datalog GDHL

CARIN Approach (Levy & Rousset)

In the CARIN approach, a knowledge base consists of:

- the bottom layer: a terminology for defining concepts and roles
- the top layer: a logic program of FOL for defining other predicates.

イロト イヨト イヨト イヨト

EDHL EDHL-Datalog GDHL

Datalog-Like Knowledge Bases Using EDHL

EDHL-Datalog

- A knowledge base ($\mathcal{R}, \mathcal{T}, \mathcal{P}, \mathcal{A}$) in EDHL-Datalog consists of:
 - $\bullet\,$ an RBox ${\cal R}$
 - an EDHL TBox ${\cal T}$
 - a Datalog program \mathcal{P} , which may use concept names as unary predicates and role names as binary predicates in bodies of program clauses
 - \bullet a set ${\cal A}$ of ground facts (i.e. ground atomic formulas).
- A query to a knowledge base in EDHL-Datalog is a conjunction of (relational) atoms, as in the case of Datalog.
- Answers to a query are defined as usual.

・ロン ・回と ・ヨン ・ヨン

EDHL EDHL-Datalog GDHL

EDHL-Datalog: Example

$\mathcal{R} = \emptyset$

- $\mathcal{T} = \{ \exists hasChild. \top \sqsubseteq parent, \\ parent \sqcap male \sqsubseteq father, \\ parent \sqcap female \sqsubseteq mother \}$
- $\mathcal{P} = \{ father(x) \land hasChild(x, y) \land age(y, k) \land k \leq 3 \rightarrow discount(x, 10), \\ mother(x) \land hasChild(x, y) \land age(y, k) \land k \leq 3 \rightarrow discount(x, 15) \}$
- $\mathcal{A} = \{ \textit{female(Jane)}, \textit{male(Mike)}, \textit{male(Peter)}, \\ \textit{hasChild(Jane, Peter)}, \textit{hasChild(Mike, Peter)}, \textit{age(Peter, 2)} \}$

where \leq is a special predicate with the usual semantics.

・ 同 ト ・ ヨ ト ・ ヨ ト

EDHL EDHL-Datalog GDHL

EDHL-Datalog: Properties

Theorem

- A knowledge base in EDHL-Datalog can effectively be translated into an equivalent knowledge base in Datalog.
- $\bullet\,$ The data complexity of EDHL-Datalog is in $\rm PTIME.$

イロト イヨト イヨト イヨト

EDHL EDHL-Datalog GDHL

GDHL: A Further Extension with Function Symbols

GDHL extends EDHL-Datalog by:

- allowing the constructor $\exists R.C$ to appear in the r.h.s. of terminological inclusion axioms $C_b \sqsubseteq C_h$
 - for example:

 $parent \sqsubseteq \exists hasChild. \top$ $\exists hasChild. \top \sqsubset parent$

- using definite logic programs (of FOL) instead of Datalog programs
 - for example:

 $father(x) \land hasChild(x, y) \land age(y, k) \land leq(k, s^{3}(0)) \rightarrow discount(x, 10)$

イロン イヨン イヨン イヨン

EDHL EDHL-Datalog GDHL

GDHL: Definition

A **GDHL TBox** is a finite set of axioms of the form $C_b \sqsubseteq C_h$, where C_b and C_h are defined by the following BNF grammar:

 $C_h ::= A \mid C_h \sqcap C_h \mid \exists R.\top \mid \exists R.C \mid \forall R.C_h$ $C_b ::= \top \mid A \mid C_b \sqcap C_b \mid C_b \sqcup C_b \mid \exists R.C_b$

A knowledge base in GDHL is a tuple $(\mathcal{R}, \mathcal{T}, \mathcal{P})$, where

- \mathcal{R} is an RBox
- \mathcal{T} is a GDHL TBox
- \mathcal{P} is a definite logic program, which may use concept names as unary predicates and role names as binary predicates (only) in the bodies of its program clauses.

・ロン ・日ン ・ヨン ・ヨン

э

EDHL EDHL-Datalog GDHL

GDHL: Properties

Proposition

A knowledge base in GDHL can effectively be translated into an equivalent definite logic program.

イロト イヨト イヨト イヨト

æ

Conclusions

- We have formulated the useful extensions EDHL, EDHL-Datalog and GDHL of DHL.
 - Each of these extensions is more expressive than the previous.
 - None of them was studied before.
- \bullet The instance checking problem in EDHL has PTIME data complexity.
- \bullet The query language EDHL-Datalog has PTIME data complexity.
- The translation from EDHL-Datalog into Datalog allows using efficient computational methods of Datalog.
- EDHL-Datalog is more convenient than Datalog for Semantic Web.
- Answering a query to a knowledge base in GDHL is reducible to answering a query to a definite logic program, for which advanced methods can be used.

We intend to extend EDHL and EDHL-Datalog by

- allowing number restrictions and negation to appear in the left hand side of terminological inclusion axioms
- allowing negation to appear in bodies of Datalog program clauses
- using stratified model semantics or well-founded semantics to deal with negation.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで