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Abstract. This paper introduces Debellor (www.debellor.org) — an open
source extensible data mining platform with stream-based architecture,
where all data transfers between elementary algorithms take the form of
a stream of samples. Data streaming enables implementation of scalable
algorithms, which can efficiently process large volumes of data, exceed-
ing available memory. This is very important for data mining research
and applications, since the most challenging data mining tasks involve
voluminous data, either produced by a data source or generated at some
intermediate stage of a complex data processing network.

Advantages of data streaming are illustrated by experiments with clus-
tering time series. The experimental results show that even for moderate-
size data sets streaming is indispensable for successful execution of
algorithms, otherwise the algorithms run hundreds times slower or just
crash due to memory shortage.

Stream architecture is particularly useful in such application domains
as time series analysis, image recognition or mining data streams. It is
also the only efficient architecture for implementation of online algo-
rithms.

The algorithms currently available on Debellor platform include all
classifiers from Rseslib and Weka libraries and all filters from Weka.

Keywords: Pipeline, Online Algorithms, Software Environment, Li-
brary.

1 Introduction

In the fields of data mining and machine learning, there is frequently a need to
process large volumes of data, too big to fit in memory. This is particularly the
case in some application domains, like computer vision or mining data streams
[112], where input data are usually voluminous. But even in other domains, where
input data are small, they can abruptly expand at an intermediate stage of
processing, e.g. due to extraction of windows from a time series or an image
[34]. Most of ordinary algorithms are not suitable for such tasks, because they
try to keep all data in memory. Instead, special algorithms are necessary, which
make efficient use of memory. Such algorithms will be called scalable.
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Another feature of data mining algorithms — besides scalability — which is very
desired nowadays is interoperability, i.e. a capability of the algorithm to be easily
connected with other algorithms. This property is more and more important, as
basically all newly created data mining systems — whether experimental or end-
user solutions — incorporate much more than just one algorithm.

It would be very worthful if algorithms were both scalable and interoperable.
Unfortunately, combining these two features is very difficult. Interoperability
requires that every algorithm is implemented as a separate module, with clearly
defined input and output. Obviously, data mining algorithm must take data as
its input, so the data must be fully materialized — generated and stored in a
data structure — just to invoke the algorithm, no matter what it actually does.
And materialization automatically precludes scalability of the algorithm.

In order to provide scalability and interoperability at the same time, algo-
rithms must be implemented in a special software architecture, which do not
enforce data materialization. Debellof] — the data mining platform introduced
in this paper — defines such an architecture, based on the concept of data stream-
ing. In Debellor, data are passed between interconnected algorithms sample-by-
sample, as a stream of samples, so they can be processed on the fly, without
full materialization. The idea of data streaming is inspired by architectures of
database management systems, which enable fast query execution on very large
data tables.

It should be noted that Debellor is not a library, like e.g., Rseslit? [BU6l7]
or WekeJ [8], but a data mining platform. Although its distribution contains
implementations of a number of algorithms, the primary goal of Debellor is to
provide not algorithms themselves, but a common architecture, in which var-
ious types of data processing algorithms may be implemented and combined,
even if they are created by independent researchers. Debellor can handle a
wide range of algorithm types: classifiers, clusterers, data filters, generators etc.
Moreover, extendability of data types is provided, so it will be possible to pro-
cess not only ordinary feature vectors, but also images, text, DNA microarray
data etc.

It is worth mentioning that Debellor’s modular and stream-oriented architec-
ture will enable easy parallelization of composite data mining algorithms. This
aspect will be investigated elsewhere.

Debellor is written in Java and distributed under GNU General Public Li-
cense. Its current version, Debellor 0.5, is available at www.debellor.org. The
algorithms currently available include all classifiers from Rseslib and Weka li-
braries, all filters from Weka and a reader of ARFF files. There are also several
algorithms implemented by Debellor itself, like Train&Test evaluation proce-
dure. The algorithms from Rseslib and Weka, except the ARFF reader, are not
scalable — this is enforced by architectures of both libraries.

! The name originates from Latin debello (to conquer) and debellator (conqueror).
2 http://rsproject.mimuw.edu.pl/
3 http://www.cs.waikato.ac.nz/ml/weka/
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2 Related Work

There is large amount of software that can be used to facilitate implementation
of new data mining algorithms. A common choice is to use an environment for
numerical calculations: R [@, Matlatf, Octavdd [TO/IT] or ScilaH1 and imple-
ment the algorithm in a scripting language defined by the environment. Many
data mining and machine learning algorithms are available for each of these en-
vironments, usually in a form of external packages, so the environments can be
seen as common platforms for different data mining algorithms. However, they
do not define common architecture for algorithms, so they do not automatically
provide interoperability. Moreover, the scripting languages of these environments
have low efficiency, no static typing and only weak support for object-oriented
programming, so they are suitable for fast prototyping and running small exper-
iments, but not for implementation of scalable and interoperable algorithms.

Another possible choice is to take a data mining library written in a general-
purpose programming language (usually Java) — examples of such libraries are
Wekell [8], Rseslitd [51617], RapidMineIlﬁ [12] — and try to fit the new algorithm
into the architecture of the library. However, these libraries preclude scalability
of algorithms, because the whole training data must be materialized in memory
before they can be passed to an algorithm.

The concept of data streaming, called also pipelining, has been used in database
management systems [I3JTATE/T6] for efficient query execution. The elementary
units capable of processing streams are called iterators in [13J14].

The issue of scalability is related to the concept of online algorithms. In ma-
chine learning literature [I7/T8], the term online has been used to denote training
algorithms which perform updates of the underlying decision model after every
single presentation of a sample. The algorithms which update the model only
when the whole training set has been presented are called batch.

Usually online algorithms can be more memory-efficient than their batch coun-
terparts, because they do not have to store samples for later use. They are also
more flexible, e.g., they can be used in incremental learning or allow for the
training process to be stopped anytime during scan of the data. This is why
extensive research has been done to devise online variants of existing batch al-
gorithms [T92002T12223]. Certainly, online algorithms are the best candidates
for implementation in stream architecture. Note, however, that many batch al-
gorithms also do not have to keep all samples in memory and thus can benefit
from data streaming. In many cases it is enough to keep only some statistics cal-
culated during scan of the data set, used afterwards to make the final update of
the model. For example, standard k-means [T7/24J25] algorithm performs batch

* http://www.r-project.org

% http://www.mathworks.com

5 http://www.octave.org

" http://www.scilab.org

8 http://www.cs.waikato.ac.nz/ml/weka
9 http://rsproject. mimuw.edu.pl

19 http://rapid-i.com



408 M. Wojnarski

updates of the model, but despite this it can be scalable if implemented in stream
architecture, as will be shown in Sect. (.8

3 Motivation

3.1 Scalability

Scalable algorithms are indispensable in most of data mining tasks — every time
when data become larger than available memory. Even if initially memory seems
capacious enough to hold the data, it may appear during experiments that data
are larger and memory smaller than expected. There are many reasons for this:

1. Not the whole physical memory is available to the data mining algorithm at
a given time. Some part is used by operating system and other applications.

2. The experiment may incorporate many algorithms run in parallel. In such
case, available memory must be partitioned between all of them. In the
future, parallelization will become more and more common due to paral-
lelization of hardware architectures, e.g., expressed by increasing number of
cores in processors.

3. In a complex experiment, composed of many elementary algorithms, every
intermediate algorithm will generate another set of data. Total amount of
data will be much larger than the amount of source data alone.

4. For architectural reasons data must be stored in memory in some general
data structures, which take more memory than would be necessary in a given
experiment. For example, data may be composed of binary attributes and
each value could be stored on a single bit, but in fact each value takes 8 bytes
or more, because every attribute — whether it is numeric or binary — is stored
in the same way. Internal data representation used by a given platform is
always a compromise between generality and efficient memory usage.

5. Data generated at intermediate processing stages may be many times larger
than source data. For example:

— Input data may require decompression, e.g. JPEG images must be con-
verted to raw bitmaps to undergo processing. This may increase data
size even by a factor of 100.

— In image recognition, a single input image may be used to generate thou-
sands of subwindows that would undergo further processing [4126]. An
input image of 1MB size may easily generate windows of 1GB size or
more. Similar situation occurs in speech recognition or time series anal-
ysis, where the sliding-window technique is used.

— Synthetic attributes may be generated, e.g. by taking all multiplications
of pairs of original attributes, which leads to quadratic increase in the
number of attributes.

— Synthetic samples may be generated, in order to increase the size of
training set and improve learning of a decision system. For example, this
method is used in [27], which studies the problem of Optical Character
Recognition. Training images of hand-written characters are randomly
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distorted by planar affine transformations and added to the training
set. Every image undergoes 9 random distortions, which leads to 10-fold
increase in the training set size (from 60 to 600 thousand images).
6. In some applications, like mining data streams [I], input data are potentially
infinite, so scalability obviously becomes an issue.
7. Even if the volume of data is small at the stage of experiments, it may
become much bigger when the algorithm is deployed in a final product and
must process real-world instead of experimental data.

The above arguments show clearly that memory is indeed a critical issue for
data mining algorithms. Every moderately complex experiment will show one or
more of the characteristics listed above. This is why we need scalable algorithms
and — for this purpose — an architecture that will enable algorithms to process
data on the fly, without full materialization of a data set.

3.2 Interoperability

Nowadays, it is impossible to solve a data mining task or conduct an experi-
ment using only one algorithm. For example, even if you want to experiment
with a single algorithm, like a new classification method, you at least have to
access data on disk, so you need an algorithm that reads a given file format
(e.g. ARF). Also, you would like to evaluate your classifier, so you need
an algorithm which implements an evaluation scheme, like cross-validation or
bootstrap. And in most cases you will also need several algorithms for data pre-
processing like normalization, feature selection, imputation of missing values etc.
— note that preprocessing is an essential step in knowledge discovery [28/29] and
usually several different preprocessing methods must be applied before data can
be passed to a decision system.

To build a data mining system, there must be a way to connect all these
different algorithms together. Thus, they must possess the property of interop-
erability. Without this property, even the most efficient algorithm is practically
useless.

Further on, the graph of data flow between elementary algorithms in a data
mining system will be called a Data Processing Network (DPN). In general, we
will assume that DPN is a directed acyclic graph, so there are no loops of data
flow. Moreover, in the current version of Debellor, DPN can only have a form of
a single chain, without branches. An example of DPN is shown in Figure[Il

Imputation
—» of missing »{ Classifier
values

Normalization Feature

ARFF reader —»| of attributes > selection

Fig. 1. Example of a Data Processing Network (DPN), composed of five elementary
algorithms (boxes). Arrows depict data flow between the algorithms.

" http://www.cs.waikato.ac.nz/ml/weka/arff.html
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4 Data Streaming

To provide interoperability, data mining algorithms must be implemented in a
common software architecture, which specifies:

— a method for connecting algorithms,
— a model of data transfer,
— common data representation.

Architectures of existing data mining systems utilize the batch model of data
transfer. In this model, algorithms must take the whole data set as an argument
for execution. To run composite experiment, represented by a DPN with a num-
ber of algorithms, an additional supervisor module is needed, responsible for
invoking consecutive algorithms and passing data sets between them. Figure [3]
presents a UML sequence diagram [30] with an example of batch processing in
a DPN composed of three algorithms. DPN itself is presented in Fig. 2

Batch data transfer enforces data materialization, which precludes scalability
of algorithms and DPN as a whole. For example, in Weka, every classifier must be
implemented as a subclass of Classifier class (in weka.classifiers package).
Its training algorithm must be implemented in the method:

buildClassifier(Instances) : void

The argument of type Instances is an array of training samples. This argument
must be created before calling buildClassifier, so the data must be fully
materialized in memory just to invoke training algorithm, no matter what the
algorithm actually does.

Similar situation takes place for clustering methods, which must inherit from
weka.clusterers.Clusterer class and overload the method:

buildClusterer(Instances) : void

Rseslib and RapidMiner also enforce data materialization before a training
algorithm can be invoked. In Rseslib, classifiers must be trained in the class
constructor, which takes an argument of type DoubleDataTable. In RapidMiner,
training of any decision system takes place in the method apply(I0OContainer)
of the class com.rapidminer.operator.Operator. Both Rseslib’s DoubleData-
Table and RapidMiner’s I0Container represent materialized input data.

If a large data set must be materialized, execution of the experiment is practi-
cally impossible. If data fit in virtual memory [31], but exceed available physical
memory, operating system temporarily swaps [31] part of the data (stores it in

LoadData ¥»| Preprocess » TrainClassifier

Fig. 2. DPN used as an example for analysis of data transfer models
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Supervisor 1. LoadData | | 2. Preprocess | | 3. TrainClassifier
[ [
| | |
processy |
|
|
|
dataset_1 |
o _dateset.l |
|

pracess(dataset_i)

cataset_2

process{dataset_2)

classifier

-

Fig. 3. UML diagram of batch data transfer in a DPN composed of three algorithms:
LoadData, Preprocess and TrainClassifier, controlled by the Supervisor module. Super-
visor invokes the algorithms (methods run) and pass data between them. All samples of
a given data set are generated and transferred together, so available memory must be
large enough to hold all data. Vertical lines denote life of modules, with time passing
down the lines. Horizontal lines represent messages (method calls and/or data trans-
fers) between the modules. Vertical boxes depict execution of the module’s code.

the swap file on disk), which makes the execution tens or hundreds times slower,
as access to disk is orders of magnitude slower than to memory.

If the data set is so large that it even exceeds available virtual memory, execu-
tion of the experiment is terminated with an out-of-memory error. This problem
could be avoided if the class that represents a data set (e.g., Instances in Weka)
implemented internally the buffering of data on disk. Then, however, the same
performance degradation would occur as in the case of system swapping, because
swapping and buffering on disk are actually the same things, only implemented
at different levels: of operating system or data mining environment.

The only way to avoid severe performance degradation when processing large
data is to generate data iteratively, sample-by-sample, and instantly process
created samples, as presented in Fig. @ In this way, data may be generated and
consumed on the fly, without materialization of the whole set. This model of
data transfer will be called iterative.
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Supervisor | 1: LoadData | | 2. Preprocess | 2: TrainClassifier
I I |
| | | |
n processo | |
sample_1_1 jj I |
< | |
process{sample_1,1) |
T
_________ SE"”_p'E-l-z_L_______jj I
|

processg

| |

| |

sample_2_1 j] ! !
oSS | |
processisample_2 | 1) | |

campe.2.2 | j] |
___________p_-_-_1_ _______ |

procegsisample_2_2) |
|
K q-————---

|
|
|
Repeated for all |
I
|

samples of the data set

Fig. 4. UML diagram of iterative data transfer. The supervisor invokes the algorithms
separately for each sample of the data set (sample x y denotes sample no. x generated by
algorithm no. y). In this way, memory requirements are very low (memory complexity
is constant), but supervisor’s control over data flow becomes very difficult.

Iterative data transfer solves the problem of high memory consumption, be-
cause memory requirements imposed by the architecture are constant — only a
fixed number of samples must be kept in memory in a given moment, no matter
how large the full data set is. However, another problem arises: the supervisor
becomes responsible for controlling the flow of samples and the order of execution
of algorithms. This control may be very complex, because each elementary algo-
rithm may have different input-output characteristics. The number of possible
variants is practically infinite, for example:

1. Preprocessing algorithm may filter out some samples, in which case more
than one input sample may be needed to produce one output sample.

2. Preprocessing algorithm may produce a number of output samples from a
single input sample, e.g. when extracting windows from an image or time
series.

3. Training algorithm of a decision system usually have to scan data many
times, not only once.
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4. Generation of output samples may be delayed relatively to the flow of input
samples, e.g. an algorithm may require that 10 input samples are given before
it starts producing output samples.

5. Input data to an algorithm may be infinite, e.g. when they are generated
synthetically. In such case, the control mechanism must stop data generation
in appropriate moment.

6. Some algorithms may have more than one input or output, e.g. an algorithm
for merging data from several different sources (many inputs) or an algo-
rithm for splitting data into training and test parts (many outputs). In such
case, the control of data flow through all the inputs and outputs becomes
even more complex, because there are additional dependencies between many
inputs/outputs of the same algorithm.

Note that the diagram in Fig. [4] depicts a simplified case when DPN is a single
chain of three algorithms, without branches; preprocessing generates exactly one
output sample for every input sample; and training algorithm scans data only
once.

Supervisor | 1. LoadData | | 2. Preprocess | | 3. TrainClassifier

[ [ [

| | | |
fuild )

| | | ’J_
| | nextd

nextd r——————————
_sample. 1.1

| sample_1_2
| | o

| nexto _L‘—nexto

_sample.2.1

sample_2_2
| T RE-2- =

| I next
nextd —1—0
_sample.3.1
sample_2_2

classifier

Fig.5. UML diagram of control and data flow in the stream model of data transfer.
The supervisor invokes only method build() of the last component (TrainClassifier).
This triggers a cascade of messages (calls to methods next()) and transfers of samples,
as needed to fulfill the initial build() request.
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The way how data flow should be controlled depends on what algorithms are
used in a given DPN. For this reason, the algorithms themselves — not the su-
pervisor — should be responsible for controlling data flow. To this end, each algo-
rithm must be implemented as a component which can communicate with other
components without external control of the supervisor. Supervisor’s responsibil-
ity must be limited only to linking components together (building DPN) and
invoking the last algorithm in DPN, which is the final receiver of all samples.
Communication should take the form of a stream of samples: (i) sample is the
unit of data transfer; (ii) samples are transferred sequentially, in a fixed order
decided by the sender. This model of data transfer will be called a stream model.
An example of control and data flow in this model is presented in Fig. Bl

Component architecture and data streaming are the features of Debellor which
enable scalability of algorithms implemented on this platform.

5 Debellor Data Mining Platform

5.1 Data Streams

Debellor’s components are called cells. Every cell is a Java class inheriting from
the base class Cell (package org.debellor.core). Cells may implement all
kinds of data processing algorithms, for example:

1. Decision algorithms: classification, regression, clustering, density estimation
etc.

Transformations of samples and attributes.

Removal or insertion of samples and attributes.

Loading data from file, database etc.

Generation of synthetic data.

Buffering and reordering of samples.

Evaluation schemes: train&test, cross-validation, leave-one-out etc.
Collecting statistics.

Data visualization.

© XA N

Cells may be connected into DPN by calling the setSource(Cell) method
on the receiving cell, for example:

Cell celll = ..., cell2 = ..., cell3 = ...;
cell2.setSource(celll);
cell3.setSource(cell?);

The first cell will usually represent a file reader or a generator of synthetic data.
Intermediate cells may apply different kinds of data transformations, while the
last cell will usually implement a decision system or an evaluation procedure.

DPN can be used to process data by calling methods open(), next() and
close() on the last cell of DPN, for example:
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cell3.open();

samplel = cell3.next();
sample2 = cell3.next();
sample3 = cell3.next();

cell3.close();

The above calls open communication session with cell3, retrieve some number of
processed samples and close the session. In order to realize each request, cell3
may communicate with its source cell, cell2, by invoking the same methods
(open, next, close) on cell2. And cell2 may in turn communicate with celll.
In this way it is possible to generate output samples on the fly. The stream of
samples may flow through consecutive cells of DPN without buffering, so input
data may have unlimited volume.

Note that the user of DPN does not have to control sample flow by himself.
To obtain the next sample of processed data it is enough to call cell3.next (),
which will invoke — if needed — a cascade of calls to preceding cells.

Moreover, different cells may control the flow of samples differently. For ex-
ample, cells that implement classification algorithms will take one input sample
in order to generate one output sample. Filtering cells will take a couple of input
samples in order to generate one output sample that matches the filtering rule.
The image subwindow generator will produce many output samples out of a sin-
gle input sample. We can see that the cell’s interface is very flexible. It enables
implementation of various types of algorithms in the same framework and allows
to easily combine the algorithms into a complex DPN.

5.2 Buildable Cells

Some cells may be buildable, in which case their content must be built before
the cell can be used. Building procedure is invoked by calling method

build() : void

on the cell object. This method is declared in the base class Cell.
Building a cell may mean different things for different types of cells. For
example:

— training a decision system of some kind (classifier, clusterer, ...),
— running an evaluation scheme (train&test, cross-validation, ... ),
— reading all data from input stream and buffering in memory.

Note that all these different types of algorithms are encapsulated under the
same interface (method build()). This increases simplicity and modularity of
the platform.

Usually, the cell reads input data during building, so it must be properly
connected to a source cell before build() is invoked. Afterwards, the cell may
be reconnected and used to process another stream of data.

Some buildable cells may also implement erase () method, which clears the
content of the cell. After erasure, the cell may be built once again.
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5.3 State of the Cell

Every cell object has a state variable attached, which indicates what cell opera-
tions are allowed in a given moment. There are three possible states: EMPTY,
CLOSED and OPEN. Transitions between them are presented in Fig. [fl Each
transition is invoked by call to an appropriate method: build (), erase(), open()
or close().

build) opent)
EMPTY CLOSED OPEM
erased closad

Fig. 6. Diagram of cell states and allowed transitions

Only a part of cell methods may be called in a given state. For example,
next () can be called only in OPEN state, while setSource () is allowed only in
EMPTY or CLOSED state. It is guaranteed by the base class implementation
that disallowed calls immediately end with an exception thrown. Thanks to this
automatic state control, connecting different cells together and building compos-
ite algorithms becomes easier and safer, because many possible mistakes or bugs
related to inter-cell communication are detected early. Otherwise, they could
exist unnoticed, generating incorrect results during data processing. Moreover,
it is easier to implement new cells, because the authors do not have to check
correctness of method calls by themselves.

5.4 Parametrization

Most of cells require a number of parameters to be set before the cell can start
working. Certainly, every type of a cell requires different parameters, but for the
sake of interoperability and simplicity of usage, there should be a common in-
terface for passing parameters, no matter what number and types of parameters
are expected by a given cell. Debellor defines such an interface.

Parameters for a given cell are stored in an object of class Parameters (pack-
age org.debellor.core), which keeps a dictionary of parameter names and as-
sociated String values (in the future we plan to extend permitted value types,
note however that all simple types can be easily converted to String). Thanks
to the use of a dictionary, the names do not have to be hard-coded as fields of cell
objects, hence parameters can be added dynamically, according to requirements
of a given cell.

The object of class Parameters can be passed to the cell by calling Cell’s
method:

setParameters(Parameters) : void
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Tt is also possible (and usually more convenient) to pass single parameter values
directly to the cell, without an intermediate Parameters object, by calling:

set (String name, String value) : void

This method call delegates to analogous method of Cell’s internal Parameters
object.

5.5 Data Representation

The basic unit of data transfer between cells is sample. Samples are represented
by objects of class Sample. Every sample contains two fields, data and label,
which hold input data and associated decision label, respectively. Any of the
fields can be null, if corresponding information is missing or simply not neces-
sary at the given point of data processing.

Cells are free to use whichever part of input data they want. For example,
build() method of a classifier (i.e. training algorithm) would use both data
and label, interpreting label as a target classification of data, given by a
supervisor. During operation phase, the classifier would ignore input label, if
present. Instead, it would classify data and assign the generated label to the
label field of the output sample.

Data and labels are represented in an abstract way. Both data and label
fields reference objects of type Data (package org.debellor.core). Data is a
base class for classes that represent data items, like single features or vectors
of features. When the cell wants to use information stored in data or label, it
must downcast the object to a specific subclass, as expected by the cell. Thanks
to this abstract method of data representation, new data types can be added
easily, by creating a new subclass of Data. Authors of new cells are not limited
to a single data type, hard-coded into the platform, as for example in Weka.

Data objects may be nested. For example, objects of class DataVector (in
org.debellor.core.data)hold arrays of other data objects, like simple features
(classes NumericFeature and SymbolicFeature) or other DataVectors.

5.6 Immutability of Data

A very important concept related to data representation is immutability. Objects
which store data — instances of Sample class or Data subclasses — are immutable,
i.e. they cannot be modified after creation. Thanks to this property, data objects
can be safely shared by cells, without risk of accidental modification in one cell
that would affect operations of another cell.

Immutability of data objects yields many benefits:

1. Safety — cells written by different people may work together in a complex
DPN without interference.

2. Simplicity — the author of a new cell does not have to care about correctness
of access to data objects.
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3. Efficiency — data objects do not have to be copied when transferred to an-
other cell. Without immutability, copying would be necessary to provide a
basic level of safety. Also, a number of samples may keep references to the
same data object.

4. Parallelization — if DPN is executed concurrently, no synchronization is
needed when accessing shared data objects. This simplifies parallelization
and makes it more efficient.

5.7 Metadata

Many cells have to know some basic characteristics (“type”) of input samples
before processing of the data starts. For example, training algorithm of a neural
network has to know the number of input features, to be able to allocate arrays of
weights of appropriate size. To provide such information, method open() returns
an object of class MetaSample (static inner class of Sample), which describes
common properties of all samples generated by the stream being open. Similarly
to Sample, MetaSample has separate fields describing input data and labels, both
of type MetaData (static inner class of Data).

Metadata have analogous structure and properties as the data being described.
The hierarchy of metadata classes, rooted at MetaData, mirrors the hierarchy of
data classes, rooted at Data. The nesting of MetaData and Data objects is also
similar, e.g. if the stream generates DataVectors of 10 SymbolicFeatures, cor-
responding MetaData object will be an instance of MetaDataVector, containing
an array of 10 MetaSymbolicFeatures describing every feature.

Similarly to Data, MetaData objects are immutable, so they can be safely
shared by cells.

5.8 Example

To illustrate the usage of Debellor, we will show how to implement standard
k-means algorithm in stream architecture and how to employ it to data process-
ing in a several-cell DPN.

K-means [I724125] is a popular clustering algorithm. Given n input samples
— numeric vectors of fixed length, x;,xo,...,x, — it tries to find cluster centers
Ci,...,Ck which minimize the sum of squared distances of samples to their closest
center:

n
Eler,...,c) = E ‘min_||x; — ¢ . (1)
P j=1,...k

This is done through iterative process with two steps repeated alternately in a
loop: (i) assignment of each sample to the nearest cluster and (ii) repositioning
of each center to the centroid of all samples in a given cluster. The algorithm is
presented in Fig. [l As we can see, the common implementation of k-means as
a function is non-scalable, because it employs batch model of data transfer:
training data are passed as an array of samples, so they must be generated and
accumulated in memory before the function is called.
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function kmeans(data) returns an array of centers

Initialize array centers

repeat
Set sum[l],..., sumlk], count[l], ..., count[k] to zero
for i =1..n do /* assign samples to clusters */
x = datali]

j = clusterOf(z)
suml[j] = suml[j] + =
count[j] = count[j] + 1

end

for 7 =1..k do /* reposition centers */
centers[j| = sumlj]/count[j]

end

until no center has been changed
return centers

Fig. 7. Pseudocode illustrating k-means clustering algorithm implemented as a regular
stand-alone function. The function takes an array of n samples (data) as argument
and returns k cluster centers. Both samples and centers are real-valued vectors. The
function clusterOf(z) returns index of the center that is closest to x.

class KMeans extends Cell
method build()

Initialize array centers
repeat
Set suml[l], ..., sumlk], count[l], ..., count[k] to zero
(*)  source.open()
for i =1..n do
(%) x = source.next()
j = clusterOf(z)
suml[j] = suml[j] + =
count[j] = count[j] + 1
end
(*)  source.close()
for j =1..k do
centers[j| = sumlj]/count[j]
end
until no center has been changed

Fig. 8. Pseudocode illustrating implementation of k-means as Debellor’s cell. Since
k-means is a training algorithm (generates a decision model), it must be implemented
in method build() of a Cell’s subclass. Input data are provided by the source cell, the
reference source being a field of Cell. The generated model is stored in the field centers
of class KMeans, method build() does not return anything. The lines of code inserted
or modified relatively to the standard implementation are marked with asterisk (*).
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class KMeans extends Cell
method next()

x = source.next()
if x == null then
return null
return z.setLabel(clusterOf(z))

Fig. 9. Pseudocode illustrating implementation of method next() of KMeans cell. This
method employs the clustering model generated by build() and stored inside the KMeans
object to label new samples with identifiers of their clusters.

/* 3 cells are created and linked into DPN */
Cell arff = new ArffReader();
arff.set("filename", "iris.arff"); /* parameter filename is set */

Cell remove = new WekaFilter("attribute.Remove");
remove.set("attributeIndices", "last");
remove.setSource(arff); /* cells arff and remove are linked */

Cell kmeans = new KMeans();
kmeans.set ("numClusters", "10");
kmeans.setSource (remove) ;

/* k-means algorithm is executed */
kmeans.build();

/* the clusterer is used to label 3 training samples with cluster identifiers */
kmeans. open() ;
Sample sl = kmeans.next(),
s2 = kmeans.next(),
s3 = kmeans.next();
kmeans.close();

/* labelled samples are printed on screen */
System.out.println(sl + "\n" + s2 + "\n" + s3);

Fig. 10. Java code showing sample usage of Debellor cells: reading data from an ARFF
file, removal of an attribute, training and application of a k-means clusterer

Stream implementation of k-means — as Debellor’s cell — is presented in Fig.[8l
In contrast to the standard implementation, training data are not passed explic-
itly, as an array of samples. Instead, the algorithm retrieves samples one-by-one
from the source cell, so it can process arbitrarily large data sets. In addition,
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Fig. @ shows how to implement method next (), responsible for application of
the generated clustering model to new samples.

Note that despite the algorithm presented in Fig. B employs stream method
of data transfer, it employs batch method of updating the decision model (the
updates are performed after all samples have been scanned). These two things —
the method of data transfer and the way how model is updated — are separate and
independent issues. It is possible for batch (in terms of model update) algorithms
to utilize and benefit from stream architecture.

Listing in Fig. [0 shows how to run a simple experiment: train a k-means
clusterer and apply it to several training samples, to label them with identifiers
of their clusters. Data are read from an ARFF file and simple preprocessing
— removal of the last attribute — is applied to all samples. Note that loading
data from file and preprocessing is executed only when the next input sample is
requested by the kmeans cell — in methods build() and next().

6 Experimental Evaluation

6.1 Setup

In existing data mining systems, when data to be processed are too large to
fit in memory, they must be put in wvirtual memory. During execution of the
algorithm, parts of data are being swapped to disk by operating system, to
make space for other parts, currently requested. In this way, portions of data
are constantly moving between memory and disk, generating huge overhead on
execution time of the algorithm. In the presented experiments we wanted to
estimate this overhead and the performance gain that can be obtained through
the use of Debellor’s data streaming instead of swapping.

For this purpose, we trained k-means [I7)24)25] clustering algorithm on time
windows extracted from the time series that was used in EUNITHJ 2003 data
mining competition. We compared execution times of two variants of the exper-
iment:

1. batch, with time windows created in advance and buffered in memory,
2. stream, with time windows generated on the fly.

Data Processing Networks of both variants are presented in Fig. [[1] and

In both variants, we employed our stream implementation of k-means, sketched
in Sect. 5.8 (KMeans cell in Fig. [Tl and [[2]). In the first variant, we inserted a
buffer into DPN just before the KMeans cell — in this way we effectively obtained
a batch algorithm. In the second variant, the buffer was placed earlier in the chain
of algorithms, before window extraction. We could have dropped buffering at all,
but then the data would be loaded from disk again in every training cycle, which
was not necessary, as the source data were small enough to fit in memory.

12 EUropean Network on Intelligent TEchnologies for Smart Adaptive Systems,
http://www.eunite.org
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WekaFilter

—>»| TimeWindows 3| Buffer —>»  KMeans
(attr.Remove)

ArffReader >

Fig.11. DPN of the first (batch) variant of experiment

WekaFilter

(T —-— — Buffer —» TimeWindows —» KMeans

ArffReader —»|

Fig. 12. DPN of the second (stream) variant of experiment

Source data were composed of a series of real-valued measurements from
glass production process, recorded in 9408 different time points separated by
15-minute intervals. There were two kinds of measurements: 29 “input” and 5
“output” values. In the experiment we used only “input” values, “output” ones
were filtered out by Weka filter for attribute removal (WekaFilter cell).

After loading from disk and dropping unnecessary attributes, the data occu-
pied 5.7MB of memory. They were subsequently passed to TimeWindows cell,
which generated time windows of length W, on every possible offset from the
beginning of the input time series. Each window was created as a concatenation
of W consecutive samples of the series. Therefore, for input series of length T,
composed of A attributes, the resulting stream contained T'— W + 1 samples,
each composed of W x A attributes. In this way, relatively small source data
(5.7MB) generated large volume of data at further stages of DPN, e.g. 259MB
for W = 50.

In the experiments, we compared training times of both variants of k-means.
Since the time effectiveness of swapping and memory management depends
highly on the hardware setup, the experiments were repeated in two different
hardware environments: (A) a laptop PC with Intel Mobile Celeron 1.7 GHz
CPU, 256MB RAM; (B) a desktop PC with AMD Athlon XP 2100+ (1.74 GHz),
1GB RAM. Both systems run under Microsoft Windows XP. Sun’s Java Virtual
Machine (JVM) 1.6.0 03 was used. The number of clusters for k-means was set
to 5.

6.2 Results

Results of experiments are presented in Table [[l and 2l They are also depicted
graphically in Fig. [[3 and [[4l

Different lengths of time windows were checked, for every length the size of
generated training data was different (given in the second column of the tables).
In each trial, training time of k-means was measured. These times are reported
in normalized form, i.e. the total training time in seconds is divided by the
number of training cycles and data size in MB. Normalized times can be directly
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Table 1. Normalized training times of k-means for batch and stream variant of exper-
iment and different lengths of time windows. Corresponding sizes of training data are
given in the second column. Hardware environment A.

Data size  Normalized Normalized

Window length [MB] execution .tlme execution t.lme

(batch variant) (stream variant)
10 53 3.1 5.6
20 104 3.2 5.3
30 156 3.1 5.0
40 208 5.1 4.9
50 259 244.4 5.0
60 311 326.9 8.3
70 362 370.6 10.7
80 413 386.0 10.9
90 464 475.3 11.1

Table 2. Normalized training times of k-means for batch and stream variant of exper-
iment and different lengths of time windows. Corresponding sizes of training data are
given in the second column. Hardware environment B.

Data size  Normalized Normalized

Window length [MB] execution .tlme execution t.lme

(batch variant) (stream variant)
50 259 4.0 5.3
100 515 4.0 5.4
120 617 4.0 6.5
150 769 5.3 8.7
170 869 6.3 8.8
180 919 23.8 8.8
190 969 36.4 8.8
200 1019 50.7 8.8
210 1069 71.3 8.8
220 1119 85.1 8.8
230 1168 100.4 9.1
240 1218 111.1 9.1
250 1267 140.2 9.4
260 1317 crash 9.3

compared across different trials. Every table and figure presents results of both
variants of the algorithm.

Time complexity of a single training cycle of k-means is linear in the data
size, so normalized execution times should be similar across different values of
window length. However, for the batch variant, the times are constant only for
small sizes of data. At the point when data size gets close to the amount of
physical memory installed on the system, execution time suddenly jumps to a
very high value, many times larger than for smaller data sizes. It may even
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Fig. 13. Normalized training times of k-means for batch and stream variant of exper-
iment and different lengths of time windows. Hardware environment A.
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Fig. 14. Normalized training times of k-means for batch and stream variant of ex-
periment and different lengths of time windows. Hardware environment B. Note that
the measurement which caused the batch variant to crash (last row in Table [2)) is not
presented here.
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happen that from some point the execution crashes due to memory shortage (see
Tab. ), despite JVM heap size being set to the highest possible value (1300 MB
on a 32-bit system). This is because swapping must be activated to handle this
large volume of data. And because access to disk is orders of magnitude slower
than to memory, algorithm execution becomes also very slow.

This dramatic slowdown is not present in the case of the stream algorithm,
which requires always the same amount of memory, at the level of 6MB. For
small data sizes this algorithm runs a bit slower, because training data must be
generated in each training cycle from the beginning. But for large data sizes it
can be 40 times better, or even more (the curves in Figures [[3 and [[4] rise very
quickly, so we may suspect that for larger data sizes the disparity between both
variants is even bigger). The batch variant is actually not usable.

What is also important, every stream implementation of a data mining algo-
rithm can be used in batch manner by simply preceding it with a buffer in DPN.
Thus, the user can choose the faster variant, depending on the data size. On
the other hand, batch implementation cannot be used in stream-based manner,
rather the algorithm must be redesigned and implemented again.

7 Conclusions

In this paper we introduced Debellor — a data mining platform with stream
architecture. We presented the concept of data streaming and proved through
experimental evaluation that it enables much more efficient processing of large
data than the currently used method of batch data transfer. Stream architec-
ture is also more general. Every stream-based implementation can be used in
batch manner. Opposite is not true. Thanks to data streaming, algorithms im-
plemented on Debellor platform can be scalable and interoperable at the same
time. We also analysed the significance of scalability issue for the design of com-
posite data mining systems and showed that even when source data are relatively
small, lack of memory may still pose a problem, since large volumes of data may
be generated at intermediate stages of data processing network.

Stream architecture has also weaknesses. Because of sequential access to data,
implementation of algorithms may be conceptually more difficult. Batch data
transfer is more intuitive for the programmer. Moreover, some algorithms may
inherently require random access to data. Although they can be implemented
in stream architecture, they have to buffer all data internally, so they will not
benefit from streaming. However, these algorithms can still benefit from inter-
operability provided by Debellor — they can be connected with other algorithms
to form a complex data mining system.

Development of Debellor will be continued. We plan to extend the architecture
to handle multi-input and multi-output cells as well as nesting of cells (e.g., to
implement meta-learning algorithms). We also want to implement parallel exe-
cution of DPN and serialization of cells (i.e., saving to a file).
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