Pragmatic 2010 notes, examples, questions
 Part I: resolving singularities

J.A. Wiśniewski
based on a joint project with Marco Andreatta

a blow-up

Consider \mathbb{C}^{3} with coordinates $\left(x_{1}, x_{2}, y\right)$ and action of \mathbb{C}^{*} with weights $(1,1,-1)$, that is $\lambda: \mathbb{C}^{*} \times \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ given by the formula

$$
\lambda(t)\left(x_{1}, x_{2}, y\right)=\left(t \cdot x_{1}, t \cdot x_{2}, t^{-1} \cdot y\right)
$$

This is the same as to take $\mathbb{C}\left[x_{1}, x_{2}, y\right]$ with \mathbb{Z} grading assigning to variables grades $(1,1,-1)$.
The ring of invariants is

$$
\mathbb{C}\left[x_{1}, x_{2}, y\right] \mathbb{C}^{\mathbb{C}^{*}}=\mathbb{C}\left[y x_{1}, y x_{2}\right] \subset \mathbb{C}\left[x_{1}, x_{2}, y\right]
$$

a blow-up

Throw away the orbits which converge to 0 when $t \rightarrow \infty$, i.e. consider the restriction of the action to $\mathbb{C}^{3} \backslash\left\{x_{1}=x_{2}=0\right\}$ (what will happen if we remove those which converge to 0 when $t \rightarrow 0$?)
This set has an affine cover consisting of
$U_{i}=\mathbb{C}^{3} \backslash\left\{x_{i}=0\right\}$ for $i=1$, 2, where

$$
U_{i}=\operatorname{Spec} \mathbb{C}\left[x_{1}, x_{2}, y, x_{i}^{-1}\right]
$$

We see that

$$
\begin{aligned}
& \mathbb{C}\left[x_{1}, x_{2}, y, x_{1}^{-1}\right]^{\mathbb{C}^{*}}=\mathbb{C}\left[x_{2} / x_{1}, y x_{1}\right] \\
& \mathbb{C}\left[x_{1}, x_{2}, y, x_{2}^{-1}\right]^{\mathbb{C}^{*}}=\mathbb{C}\left[x_{1} / x_{2}, y x_{2}\right]
\end{aligned}
$$

a blow-up

We have the inclusion

$$
\mathbb{C}\left[x_{1}, x_{2}, y\right]^{\mathbb{C}^{*}}=\mathbb{C}\left[y x_{1}, y x_{2}\right] \subset \mathbb{C}\left[x_{1}, x_{2}, y, x_{i}^{-1}\right]^{\mathbb{C}^{*}}
$$

If

$$
V_{i}=\operatorname{Spec} \mathbb{C}\left[x_{1}, x_{2}, y, x_{i}^{-1}\right]_{\mathbb{C}^{*}}
$$

then V_{1} and V_{2} glue over

$$
\text { Spec } \mathbb{C}\left[x_{1}, x_{2}, y,\left(x_{1} x_{2}\right)^{-1}\right]^{\mathbb{C}^{*}}
$$

to the blow up of $\mathbb{C}^{2}=\operatorname{Spec} \mathbb{C}\left[y x_{1}, y x_{2}\right]$ at $(0,0)$.

resolution of \mathbb{A}_{1}

Again, take \mathbb{C}^{3} with coordinates (x_{1}, x_{2}, y) and now action with weights $(1,1,-2)$. The ring of invariants $\mathbb{C}\left[x_{1}, x_{2}, y\right] \mathbb{C}^{*}$ is now generated by $z_{1}=x_{1}^{2} y, z_{2}=x_{2}^{2} y, z_{3}=x_{1} x_{2} y$ with relation $z_{1} z_{2}=z_{3}^{2}$.

resolution of \mathbb{A}_{1}

As before throw away the orbits which converge to 0 when $t \rightarrow \infty$, i.e. consider the restriction of the action to $\mathbb{C}^{3} \backslash\left\{x_{1}=x_{2}=0\right\}$
Take the cover consisting of $U_{i}=\mathbb{C}^{3} \backslash\left\{x_{i}=0\right\}$ for $i=1$, 2, where

$$
U_{i}=\operatorname{Spec} \mathbb{C}\left[x_{1}, x_{2}, y, x_{i}^{-1}\right]
$$

We see that

$$
\begin{aligned}
& \mathbb{C}\left[x_{1}, x_{2}, y, x_{1}^{-1}\right]^{\mathbb{C}^{*}}=\mathbb{C}\left[x_{2} / x_{1}, y x_{1}^{2}\right] \\
& \mathbb{C}\left[x_{1}, x_{2}, y, x_{2}^{-1}\right]^{\mathbb{C}^{*}}=\mathbb{C}\left[x_{1} / x_{2}, y x_{2}^{2}\right]
\end{aligned}
$$

resolution of \mathbb{A}_{1}

Again, we have the inclusion

$$
\mathbb{C}\left[x_{1}, x_{2}, y\right]^{\mathbb{C}^{*}}=\mathbb{C}\left[y x_{1}, y x_{2}\right] \subset \mathbb{C}\left[x_{1}, x_{2}, y, x_{i}^{-1}\right]^{\mathbb{C}^{*}}
$$

and if $V_{i}=\operatorname{Spec} \mathbb{C}\left[x_{1}, x_{2}, y, x_{i}^{-1}\right]^{\mathbb{C}^{*}}$ then V_{1} and V_{2} glue over Spec $\mathbb{C}\left[x_{1}, x_{2}, y,\left(x_{1} x_{2}\right)^{-1}\right] \mathbb{C}^{*}$ to the resolution of $\left\{z_{1} z_{2}=z_{3}^{2}\right\} \subset \mathbb{C}^{3}$.

Excercise: do the same for weights $(1,1,-n)$.

toric view

The monomials (characters) invariant with respect to the \mathbb{C}^{*} action are lattice points in $\widehat{M}=\mathbb{Z}^{3}$ which are in the kernel M of the map $\left(a_{1}, a_{2}, b\right) \mapsto a_{1}+a_{2}-n \cdot b$. Those element of M with positive coordinates in \widehat{M} (positive octant) form a semigroup spanned by $(i, n-i, 1)$ where $i=0, \ldots n$.

This way we find out that
$\left\lfloor\mathbb{C}\left[x_{1}, x_{2}, y\right]^{\mathbb{C}^{*}} \simeq \mathbb{C}\left[z_{0}, \ldots, z_{n}\right] /\left(z_{i} z_{j}-z_{r} z_{s}\right.\right.$ for $\left.i+j=r+s\right)$

toric view

Dually, consider the linear map $\hat{N}=\mathbb{Z}^{3} \rightarrow N=\mathbb{Z}^{2}$ given by the matrix

$$
\left[\begin{array}{ccc}
0 & n & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

It is surjective and its kernel is $(1,1,-n)$.

toric view

Dually, consider the linear map $\hat{N}=\mathbb{Z}^{3} \rightarrow N=\mathbb{Z}^{2}$ given by the matrix

$$
\left[\begin{array}{ccc}
0 & n & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

It is surjective and its kernel is $(1,1,-n)$.
Take the fan $\widehat{\Sigma}^{+}$consisting of all faces of the positive octant $\hat{\sigma}^{+}$. It is mapped to the cone (and of its fan)

$$
\sigma=\mathbb{R}_{\geq 0} \cdot(0,-1)+\mathbb{R}_{\geq 0} \cdot(n, 1)
$$

toric view

Dually, consider the linear map $\hat{N}=\mathbb{Z}^{3} \rightarrow N=\mathbb{Z}^{2}$ given by the matrix

$$
\left[\begin{array}{ccc}
0 & n & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

It is surjective and its kernel is $(1,1,-n)$. If we remove "the interior" of $\widehat{\sigma}^{+}$and its face
$\mathbb{R} \geq 0 \cdot(1,0,0)+\mathbb{R}_{\geq 0} \cdot(0,1,0)$ then the resulting fan maps to the fan obtained by dividing σ by the ray $\mathbb{R}_{\geq 0}(1,0)$:

toric view, general

Take an exact sequence of lattices

$$
0 \longrightarrow P^{\vee} \longrightarrow \widehat{N} \xrightarrow{\pi} N \longrightarrow 0
$$

Let \widehat{M} be the dual of \widehat{N} with the positive octant $\widehat{\sigma}^{+}$, we consider the polynomial algebra $\mathbb{C}\left[\widehat{M} \cap \widehat{\sigma}^{+}\right]$with monomials $\chi^{u}, u \in \widehat{M}$ and the affine space $\widehat{\mathbb{A}}=\operatorname{Spec} \mathbb{C}\left[\widehat{M} \cap \widehat{\sigma}^{+}\right]$.

toric view, general

Torus $\mathbb{T}_{P}=P^{\vee} \otimes \mathbb{C}^{*}$ acts on $\mathbb{C}\left[\widehat{M} \cap \widehat{\sigma}^{+}\right]$as follows

$$
\lambda \otimes t\left(\chi^{u}\right)=t^{\lambda(u)} \cdot \chi^{u}
$$

The ring of invariants can be computed as follows

$$
\mathbb{C}\left[\widehat{M} \cap \widehat{\sigma}^{+}\right]^{\mathbb{T}_{P}}=\mathbb{C}\left[M \cap \widehat{\sigma}^{+}\right]
$$

and it yields a toric variety with big torus $\mathbb{T}_{N}=N \otimes \mathbb{C}^{*}$ associated to the cone $\pi\left(\widehat{\sigma}^{+}\right)$

resolution of \mathbb{A}_{n}

Take a torus $\left(\mathbb{C}^{*}\right)^{n}$ and let it act on $\mathbb{C}\left[x_{1}, y_{1}, \ldots, y_{n}, x_{2}\right]$ with weights forming the matrix $(n+2) \times n$:

$$
A=\left[\begin{array}{cccccccc}
1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1
\end{array}\right]
$$

The semigroup ker $A \cap \hat{\sigma}^{+}$is generated by $(0,1,2, \ldots, n+1),(n+1, n, \ldots, 1,0)$ and $(1,1, \ldots, 1)$ hence

$$
\mathbb{C}\left[x_{1}, y_{1}, \ldots, y_{n}, x_{2}\right]^{\mathbb{C}^{*}}=\mathbb{C}\left[z_{1}, z_{2}, w\right] /\left(z_{1} z_{2}-w^{n+1}\right)
$$

resolution of \mathbb{A}_{n}

The quotient can be described by the surjective map of lattices $\widehat{N}=\mathbb{Z}^{n+2} \rightarrow N=\mathbb{Z}^{2}$ given by the matrix

$$
B=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
0 & 1 & 2 & \cdots & n & n+1
\end{array}\right]
$$

Note that $B \cdot A^{\top}=0$ or, more precisely, B^{\top} is the kernel of A. Once the images of rays are known then the fan is determined

$z_{1} z_{2}=w_{1} w_{2}$, a flop

Now we pass to higher dimensions: consider \mathbb{C}^{*} action on \mathbb{C}^{4} with coordinates $x_{1}, x_{2}, y_{1}, y_{2}$ given by formula

$$
\lambda(t)\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(t x_{1}, t x_{2}, t^{-1} y_{1}, t^{-1} y_{2}\right)
$$

The ring of invariants is generated by $z_{i j}=x_{i} y_{j}$ for $i, j=1,2$ with relation $z_{12} z_{21}=z_{11} z_{22}$ which yields the quadric cone singularity.

$z_{1} z_{2}=w_{1} w_{2}$, a flop

Removing orbits which converge to 0 when $t \rightarrow \infty$ yields a quotient with affine covering consisting of Spec $\mathbb{C}\left[x_{2} / x_{1}, x_{1} y_{1}, x_{1} y_{2}\right]$ and Spec $\mathbb{C}\left[x_{1} / x_{2}, x_{2} y_{1}, x_{2} y_{2}\right]$.
These are two copies of \mathbb{C}^{3} which glue (via the obvious relations) to the total space of $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ over \mathbb{P}^{1}.
Note that x 's and y 's are in symmetric position. That is, removing orbits which converge to ∞ when $t \rightarrow \infty$ yields a quotient with affine covering consisting of
Spec $\mathbb{C}\left[y_{2} / y_{1}, x_{1} y_{1}, x_{2} y_{1}\right]$ and $\operatorname{Spec} \mathbb{C}\left[y_{1} / y_{2}, x_{1} y_{2}, x_{2} y_{2}\right]$.

$z_{1} z_{2}=w_{1} w_{2}$, a flop

The toric picture is as follows (2 dim section of 3 dim fan):

Which are two projections of the 4 dim cone

$z_{1} z_{2}=w_{1} w_{2}$, a flop

Determining which is the front and which is the rear of \forall is done by a choice of a nonzero vector u_{0} in the lattice $P=\widehat{M} / M$ which tells you which orbits you want to remove. In general: fix $u_{0} \in P=\widehat{M} / M$ take $\widehat{u}_{0} \in \widehat{M}$, $\widehat{u_{o}} \mapsto u_{0}$ and for $v \in \pi\left(\sigma^{+}\right) \subset N_{\mathbb{R}}$ set
$\phi_{u_{0}}(v):=\sup \left\{\widehat{u}_{0}(\widehat{v}): v \in \sigma^{+} \cap \pi^{-1}(v)\right\}$, assumed $\neq \infty$.
Then $\phi_{u_{0}}$ is piecewise linear and convex so we can define a fan Σ with support on $\pi\left(\sigma^{+}\right)$by the linear pieces of $\phi_{u_{0}}$: then $X(\Sigma)$ admits a line bundle associated to this function.

$z_{1} z_{2} z_{3}=w^{2}$, more flops

Consider the action of $\left(\mathbb{C}^{*}\right)^{3}$ on \mathbb{C}^{6} with coordinates $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)$ given by the matrix of weights

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 1 & -2 & 0 & 0 \\
1 & 0 & 1 & 0 & -2 & 0 \\
1 & 1 & 0 & 0 & 0 & -2
\end{array}\right]
$$

The ring of invariants is generated by $z_{1}=x_{1}^{2} y_{2} y_{3}$,
$z_{2}=x_{2}^{2} y_{1} y_{2}, z_{3}=x_{3}^{2} y_{1} y_{2}$ and $w=x_{1} x_{2} x_{3} y_{1} y_{2} y_{3}$ with the relation $z_{1} z_{2} z_{3}=w^{2}$.

$z_{1} z_{2} z_{3}=w^{2}$, more flops

Let us consider a basis $\left(f_{1}, f_{2}, f_{3}, e_{1}, e_{2}, e_{3}\right)$ of \widehat{N}. The associated map $\pi: \widehat{N} \rightarrow N \rightarrow 0$ is given by the matrix

$$
B=\left[\begin{array}{llllll}
2 & 0 & 0 & 0 & 1 & 1 \\
0 & 2 & 0 & 1 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 & 0
\end{array}\right]
$$

where N is the lattice of index 2 in \mathbb{Z}^{3}.

$z_{1} z_{2} z_{3}=w^{2}$, more flops

There are several ways of defining the fan of the GIT quotient (here its intersection with a hyperplane containg images of f_{i} 's as vertices of the outer triangle and images of e_{i} 's as \bullet)

$z_{1} z_{2} z_{3}=w^{2}$, more flops

There are several ways of defining the fan of the GIT quotient (here its intersection with a hyperplane containg images of f_{i} 's as vertices of the outer triangle and images of e_{i} 's as \bullet)

$z_{1} z_{2} z_{3}=w^{2}$, more flops

The convexity condition for $u_{0} \in P$ says $u_{0}\left(2 e_{i}-f_{j}-f_{k}\right) \geq 0$, for $i \neq j \neq k \neq i$, if we want the images of the rays of σ^{+}in the fan Σ. This defines two dual cones Mov $\subset P_{\mathbb{R}}$ of admissible u_{0} 's and Ess $\subset P_{\mathbb{R}}^{\vee}$ of conditions defining them.
Now case Δ requires $u_{0}\left(e_{i}+e_{j}-e_{k}-f_{k}\right)>0$ for $i \neq j \neq k \neq i$ so we can take $\widehat{u}_{0}=(0,0,0,1,1,1)$. On the other hand, to get Δ we take u_{0} with $u_{0}\left(e_{2}+e_{3}-e_{1}-f_{1}\right)<0, u_{0}\left(2 e_{2}-f_{1}-f_{3}\right)>0$, $u_{0}\left(2 e_{3}-f_{1}-f_{2}\right)>0$, hence we use $\widehat{u}_{0}=(1.5,0,0,1,1,1)$. See Example 1 at
www.mimuw.edu.pl/~jarekw/java/Pragmatic2010JavaView.html

$z_{1} z_{2} z_{3}=w^{2}$, explicit resolution

Look again at $\Delta \Delta$ and remember that this is a projection of σ^{+}. The faces of σ^{+}which are not seen at this picture are the sets of unstable points, there are six components of them: $\left\{x_{i}=y_{i}=0\right\}$ are related to faces $\left\langle f_{i}, e_{i}\right\rangle$ and $\left\{x_{i}=x_{j}=0\right\}$ come from $\left\langle f_{i}, f_{j}\right\rangle$, for $i \neq j$.
The set of semistable points is covered by four invariant affine sets: $\mathbb{C}^{6} \backslash\left\{x_{1} x_{2} x_{3}=0\right\}, \mathbb{C}^{6} \backslash\left\{y_{1} x_{2} x_{3}=0\right\}$, $\mathbb{C}^{6} \backslash\left\{x_{1} y_{2} x_{3}=0\right\}, \mathbb{C}^{6} \backslash\left\{x_{1} x_{2} y_{3}=0\right\}$.

$z_{1} z_{2} z_{3}=w^{2}$, explicit resolution

The inner cone in Δ is the image of $\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ hence it is related to the \mathbb{T}_{P} invariant subalgebra of $\mathbb{C}\left[x_{i}^{ \pm 1}, y_{i}\right]$ which is generated by $w / z_{i}=\left(y_{i} / x_{i}\right) x_{j} x_{k}$ for $i \neq j \neq k \neq i$. Note that $z_{i}=\left(w / z_{j}\right) \cdot\left(w / z_{k}\right)$ so the maximal ideal in $\mathbb{C}\left[z_{1}, z_{2}, z_{3}, w\right] /\left(z_{1} z_{2} z_{3}-w^{2}\right)$ extends to the ideal of three lines $\left\{w / z_{i}=w / z_{j}=0\right\}$.
An outer cone in Δ is the image of $\left\langle f_{1}, e_{2}, e_{3}\right\rangle$ hence it is related to \mathbb{T}_{P} invariants of $\mathbb{C}\left[x_{1}, x_{2}^{ \pm 1}, x_{3}, y_{1}^{ \pm 1}, y_{2}, y_{3}\right]$ generated by $w / z_{2}=\left(y_{2} / x_{2}\right) x_{1} x_{3}, w / z_{3}=\left(y_{3} / x_{3}\right) x_{1} x_{2}$ and $z_{1} / w=x_{1} /\left(y_{1} x_{2} x_{3}\right)$. What is the extension of the maximal ideal now?

embedded resolution of \mathbb{A}_{1}

A blow-up of \mathbb{C}^{3} at the origin can be described in terms of an action of \mathbb{C}^{*} of $\mathbb{C}^{4}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y^{\prime}\right)$ with weights $(1,1,1,-1)$, the coordinates of \mathbb{C}^{3} are then $z_{i}=x_{i}^{\prime} y^{\prime}$. Take zero set of $z_{1} z_{2}-z_{3}^{2}$; its irreducible inverse is $x_{1}^{\prime} x_{2}^{\prime}-x_{3}^{\prime 2}$.

embedded resolution of \mathbb{A}_{1}

Take the map $\mathbb{C}\left[x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y^{\prime}\right] \longrightarrow \mathbb{C}\left[x_{1}, x_{2}, y\right]$, where the latter variables have grades $(1,1,-2)$ such that $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y^{\prime}\right) \mapsto\left(x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, y\right)$. Its image is the even graded part of $\mathbb{C}\left[x_{1}, x_{2}, y\right]$ and its kernel is $\left(x_{1}^{\prime} x_{2}^{\prime}-x_{3}^{\prime 2}\right)$ thus $\mathbb{C}\left[x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y^{\prime}\right] /\left(x_{1}^{\prime} x_{2}^{\prime}-x_{3}^{\prime 2}\right) \subset \mathbb{C}\left[x_{1}, x_{2}, y\right]$ and both have the same Proj.
However the former one is not quite what we want!
We want to get a functorial object, the Cox ring.

the Cox ring, 1st view

Let $V \subset \mathbb{C}^{n}$ be an affine variety with coordinate ring A. Suppose that it admits a resolution of singularities
$\widehat{V} \rightarrow V$ and assume that $\operatorname{Pic}(\hat{v} / V)$ is a lattice with a basis L_{1}, \ldots, L_{r}. The Cox ring of $\widehat{V} \rightarrow V$ is an A-algebra

$$
\widehat{A}=\bigoplus \Gamma\left(\mathcal{O}\left(m_{1} L_{1}+\cdots+m_{r} L_{r}\right)\right)
$$

with \mathbb{Z}^{r} grading. We will consider good singularities for which $\widehat{V} \rightarrow V$ will be crepant.

the Cox ring, 1st view

In our situation (take this as an assumption, if you want):
e \widehat{A} is finitely generated \mathbb{C}-algebra with $\left(\mathbb{C}^{*}\right)^{r}$ action
e A is the ring of invariants of \widehat{A} under the induced $\left(\mathbb{C}^{*}\right)^{r}$ action
e all crepant (good) resolutions of V are GIT quotients of $\operatorname{Spec} \widehat{A}$
e the toric case works nicely: take $\sigma \subset N_{\mathbb{R}}$ a (pointed) cone with generators of rays lying on an affine hyperplane, no lattice points lying below that hyperplane and the points on that hyperlane being vertices of a unimodular triangulation

Atiyah flop, Mukai flop

Take \mathbb{C}^{*} action on $\mathbb{C}^{r} \times \mathbb{C}^{s}$ with coordinates $\left(x_{i}, y_{j}\right)$ and weights 1 for x_{i} 's and -1 for y_{j} 's. The quotient is toric singularity associated to cone spanned by s vectors e_{i} and r vectors f_{j} in the lattice of rank $r+s-1$ with one relation $\sum e_{i}=\sum f_{j}$. If $r=s$ this admits two crepant resolutions associated to two unimodular triangulations: one in which we omit consecutive e_{i} 's, the other in which we omit f_{j} 's. Find the affine pieces of covering, they should be of type Spec $\mathbb{C}\left[x_{i} / x_{1}, x_{1} y_{j}\right]$.
Verify it by looking at the cone over Segre embedding of $\mathbb{P}^{r-1} \times \mathbb{P}^{r-1}$.

Atiyah flop, Mukai flop

Consider the quadric hypersurface $\left\{\sum_{i} x_{i} y_{i}=0\right\} \subset\left(\mathbb{C}^{r}\right)^{2}$ which is invariant with respect to the \mathbb{C}^{*} action. Take the symplectic form $\omega=\sum_{i}\left(d x_{i} \wedge d y_{i}\right)$ and evaluate it on the vector field $\sum_{i}\left(x_{i} \partial_{x_{i}}-y_{i} \partial_{y_{i}}\right)$ which is tangent to the \mathbb{C}^{*} action. The result is $\sum_{i}\left(x_{i} d y_{i}+y_{i} d x_{i}\right)$, the derivative of the defining equation.
This implies that ω descends to a symplectic form on the quotient(s). See it in local coordinates.
Another view: standard symplectic form on the cotangent bundle od \mathbb{P}^{r-1}.
This way for $r>1$ we get the only isolated singularity with symplectic resolution.

more symplectic resolutions

See Example 1A at
www.mimuw.edu.pl/~jarekw/java/Pragmatic2010JavaView.html

resolution of \mathbb{D}_{4}

Take a hyperplane section of the singularity $z_{1} z_{2} z_{3}=w^{2}$ defined by the relation $z_{1}+z_{2}+z_{3}=0$. The lift-up of this hyperplane to the resolution discussed above has one singular point of type \mathbb{A}_{1} because

$$
z_{1}+z_{2}+z_{3}=\frac{w}{z_{1}} \cdot \frac{w}{z_{2}}+\frac{w}{z_{1}} \cdot \frac{w}{z_{3}}+\frac{w}{z_{2}} \cdot \frac{w}{z_{3}}
$$

(Check that there are no other singular points in other affine sets of the covering.)

resolution of \mathbb{D}_{4}

We can do the embedded resolution but this will not yield the Cox ring.

problems

For the start, let us consider two classes of quotient singularities:
e surface Du Val or $\mathbb{A}-\mathbb{D}-\mathbb{E}$ singularities:

$$
\begin{aligned}
& \text { e } x^{n+1}+y^{2}+z^{2}=0 \\
& \text { e } x^{n-1}+x y^{2}+z^{2}=0 \\
& \text { e } x^{4}+y^{3}+z^{2}=0, x^{3} y+y^{3}+z^{2}=0, x^{5}+y^{3}+z^{2}=0
\end{aligned}
$$

e 4-dimensional quotient symplectic singularities: wreath product of $\mathbb{A}-\mathbb{D}-\mathbb{E}$ and \mathbb{Z}_{2}

problems

e find the Cox ring of these singularities
e find the structure of of Mov and its division by flopping classes

