Pragmatic 2010 notes, examples, questions Part I: resolving singularities

J.A. Wiśniewski

based on a joint project with Marco Andreatta

a blow-up

Consider \mathbb{C}^3 with coordinates (x_1, x_2, y) and action of \mathbb{C}^* with weights (1, 1, -1), that is $\lambda : \mathbb{C}^* \times \mathbb{C}^3 \to \mathbb{C}^3$ given by the formula

$$\lambda(t)(x_1, x_2, y) = (t \cdot x_1, t \cdot x_2, t^{-1} \cdot y)$$

This is the same as to take $\mathbb{C}[x_1, x_2, y]$ with \mathbb{Z} grading assigning to variables grades (1, 1, -1).

The ring of invariants is

$$\mathbb{C}[x_1, x_2, y]^{\mathbb{C}^*} = \mathbb{C}[yx_1, yx_2] \subset \mathbb{C}[x_1, x_2, y]$$

a blow-up

Throw away the orbits which converge to 0 when $t \to \infty$, i.e. consider the restriction of the action to $\mathbb{C}^3 \setminus \{x_1 = x_2 = 0\}$ (what will happen if we remove those which converge to 0 when $t \to 0$?) This set has an affine cover consisting of $U_i = \mathbb{C}^3 \setminus \{x_i = 0\}$ for i = 1, 2, where $U_i = \operatorname{Spec} \mathbb{C}[x_1, x_2, y, x_i^{-1}]$

We see that

$$\mathbb{C}[x_1, x_2, y, x_1^{-1}]^{\mathbb{C}^*} = \mathbb{C}[x_2/x_1, yx_1]$$
$$\mathbb{C}[x_1, x_2, y, x_2^{-1}]^{\mathbb{C}^*} = \mathbb{C}[x_1/x_2, yx_2]$$

a blow-up

lf

We have the inclusion

$$\mathbb{C}[x_1, x_2, y]^{\mathbb{C}^*} = \mathbb{C}[yx_1, yx_2] \subset \mathbb{C}[x_1, x_2, y, x_i^{-1}]^{\mathbb{C}^*}$$

$$V_i = \operatorname{Spec} \mathbb{C}[x_1, x_2, y, x_i^{-1}]^{\mathbb{C}^*}$$

then V_1 and V_2 glue over

Spec
$$\mathbb{C}[x_1, x_2, y, (x_1x_2)^{-1}]^{\mathbb{C}^*}$$

to the blow up of $\mathbb{C}^2 = \operatorname{Spec} \mathbb{C}[yx_1, yx_2]$ at (0, 0).

resolution of \mathbb{A}_1

Again, take \mathbb{C}^3 with coordinates (x_1, x_2, y) and now action with weights (1, 1, -2). The ring of invariants $\mathbb{C}[x_1, x_2, y]^{\mathbb{C}^*}$ is now generated by $z_1 = x_1^2 y$, $z_2 = x_2^2 y$, $z_3 = x_1 x_2 y$ with relation $z_1 z_2 = z_3^2$.

resolution of \mathbb{A}_1

As before throw away the orbits which converge to 0 when $t \to \infty$, i.e. consider the restriction of the action to $\mathbb{C}^3 \setminus \{x_1 = x_2 = 0\}$ Take the cover consisting of $U_i = \mathbb{C}^3 \setminus \{x_i = 0\}$ for i = 1, 2, where

$$U_i = \operatorname{Spec} \mathbb{C}[x_1, x_2, y, x_i^{-1}]$$

We see that

$$\mathbb{C}[x_1, x_2, y, x_1^{-1}]^{\mathbb{C}^*} = \mathbb{C}[x_2/x_1, yx_1^2]$$
$$\mathbb{C}[x_1, x_2, y, x_2^{-1}]^{\mathbb{C}^*} = \mathbb{C}[x_1/x_2, yx_2^2]$$

resolution of \mathbb{A}_1

Again, we have the inclusion

$$\mathbb{C}[x_1, x_2, y]^{\mathbb{C}^*} = \mathbb{C}[yx_1, yx_2] \subset \mathbb{C}[x_1, x_2, y, x_i^{-1}]^{\mathbb{C}^*}$$

and if $V_i = \operatorname{Spec} \mathbb{C}[x_1, x_2, y, x_i^{-1}]^{\mathbb{C}^*}$ then V_1 and V_2 glue over $\operatorname{Spec} \mathbb{C}[x_1, x_2, y, (x_1x_2)^{-1}]^{\mathbb{C}^*}$ to the resolution of $\{z_1z_2 = z_3^2\} \subset \mathbb{C}^3$.

Excercise: do the same for weights (1, 1, -n).

The monomials (characters) invariant with respect to the \mathbb{C}^* action are lattice points in $\widehat{M} = \mathbb{Z}^3$ which are in the kernel M of the map $(a_1, a_2, b) \mapsto a_1 + a_2 - n \cdot b$.

Those element of M with positive coordinates in \widehat{M} (positive octant) form a semigroup spanned by (i, n - i, 1)where $i = 0, \ldots n$.

This way we find out that

$$\mathbb{C}[x_1, x_2, y]^{\mathbb{C}^*} \simeq \mathbb{C}[z_0, \dots, z_n]/(z_i z_j - z_r z_s \text{ for } i+j=r+s)$$

Dually, consider the linear map $\widehat{N} = \mathbb{Z}^3 \to N = \mathbb{Z}^2$ given by the matrix

$$\begin{bmatrix} 0 & n & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

It is surjective and its kernel is (1, 1, -n).

Dually, consider the linear map $\widehat{N} = \mathbb{Z}^3 \to N = \mathbb{Z}^2$ given by the matrix

$$\begin{bmatrix} 0 & n & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

It is surjective and its kernel is (1, 1, -n). Take the fan $\widehat{\Sigma}^+$ consisting of all faces of the positive octant $\widehat{\sigma}^+$. It is mapped to the cone (and of its fan)

$$\sigma = \mathbb{R}_{\geq 0} \cdot (0, -1) + \mathbb{R}_{\geq 0} \cdot (n, 1)$$

Dually, consider the linear map $\widehat{N} = \mathbb{Z}^3 \to N = \mathbb{Z}^2$ given by the matrix

$$\begin{bmatrix} 0 & n & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

It is surjective and its kernel is (1, 1, -n). If we remove "the interior" of $\hat{\sigma}^+$ and its face $\mathbb{R}_{\geq 0} \cdot (1, 0, 0) + \mathbb{R}_{\geq 0} \cdot (0, 1, 0)$ then the resulting fan maps to the fan obtained by dividing σ by the ray $\mathbb{R}_{>0}(1, 0)$:

toric view, general

Take an exact sequence of lattices

$$0 \longrightarrow P^{\vee} \longrightarrow \widehat{N} \xrightarrow{\pi} N \longrightarrow 0$$

Let \widehat{M} be the dual of \widehat{N} with the positive octant $\widehat{\sigma}^+$, we consider the polynomial algebra $\mathbb{C}[\widehat{M} \cap \widehat{\sigma}^+]$ with monomials χ^u , $u \in \widehat{M}$ and the affine space $\widehat{\mathbb{A}} = \operatorname{Spec} \mathbb{C}[\widehat{M} \cap \widehat{\sigma}^+]$.

toric view, general

Torus $\mathbb{T}_P = P^{\vee} \otimes \mathbb{C}^*$ acts on $\mathbb{C}[\widehat{M} \cap \widehat{\sigma}^+]$ as follows $\lambda \otimes t(\chi^u) = t^{\lambda(u)} \cdot \chi^u$

The ring of invariants can be computed as follows

$$\mathbb{C}[\widehat{M} \cap \widehat{\sigma}^+]^{\mathbb{T}_P} = \mathbb{C}[M \cap \widehat{\sigma}^+]$$

and it yields a toric variety with big torus $\mathbb{T}_N = N \otimes \mathbb{C}^*$ associated to the cone $\pi(\widehat{\sigma}^+)$

resolution of \mathbb{A}_n

Take a torus $(\mathbb{C}^*)^n$ and let it act on $\mathbb{C}[x_1, y_1, \dots, y_n, x_2]$ with weights forming the matrix $(n+2) \times n$:

$$A = \begin{bmatrix} 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 \end{bmatrix}$$

The semigroup ker $A \cap \hat{\sigma}^+$ is generated by $(0, 1, 2, \dots, n+1)$, $(n+1, n, \dots, 1, 0)$ and $(1, 1, \dots, 1)$ hence

$$\mathbb{C}[x_1, y_1, \dots, y_n, x_2]^{\mathbb{C}^*} = \mathbb{C}[z_1, z_2, w]/(z_1 z_2 - w^{n+1})$$

resolution of \mathbb{A}_n

The quotient can be described by the surjective map of lattices $\widehat{N} = \mathbb{Z}^{n+2} \rightarrow N = \mathbb{Z}^2$ given by the matrix

Note that $B \cdot A^{\top} = 0$ or, more precisely, B^{\top} is the kernel of *A*. Once the images of rays are known then the fan is determined

Now we pass to higher dimensions: consider \mathbb{C}^* action on \mathbb{C}^4 with coordinates x_1, x_2, y_1, y_2 given by formula

$$\lambda(t)(x_1, x_2, y_1, y_2) = (tx_1, tx_2, t^{-1}y_1, t^{-1}y_2)$$

The ring of invariants is generated by $z_{ij} = x_i y_j$ for i, j = 1, 2 with relation $z_{12}z_{21} = z_{11}z_{22}$ which yields the quadric cone singularity.

Removing orbits which converge to 0 when $t \to \infty$ yields a quotient with affine covering consisting of $\operatorname{Spec} \mathbb{C}[x_2/x_1, x_1y_1, x_1y_2]$ and $\operatorname{Spec} \mathbb{C}[x_1/x_2, x_2y_1, x_2y_2]$. These are two copies of \mathbb{C}^3 which glue (via the obvious relations) to the total space of $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ over \mathbb{P}^1 .

Note that *x*'s and *y*'s are in symmetric position. That is, removing orbits which converge to ∞ when $t \to \infty$ yields a quotient with affine covering consisting of $\operatorname{Spec} \mathbb{C}[y_2/y_1, x_1y_1, x_2y_1]$ and $\operatorname{Spec} \mathbb{C}[y_1/y_2, x_1y_2, x_2y_2]$.

$z_1 z_2 = w_1 w_2$, a flop

The toric picture is as follows (2 dim section of 3 dim fan):

Which are two projections of the 4 dim cone

Determining which is the front and which is the rear of is done by a choice of a nonzero vector u_0 in the lattice $P = \widehat{M}/M$ which tells you which orbits you want to remove. In general: fix $u_0 \in P = \widehat{M}/M$ take $\widehat{u}_0 \in \widehat{M}$, $\widehat{u}_o \mapsto u_0$ and for $v \in \pi(\sigma^+) \subset N_{\mathbb{R}}$ set $\phi_{u_0}(v) := \sup{\widehat{u}_0(\widehat{v}) : v \in \sigma^+ \cap \pi^{-1}(v)}$, assumed $\neq \infty$.

Then ϕ_{u_0} is piecewise linear and convex so we can define a fan Σ with support on $\pi(\sigma^+)$ by the linear pieces of ϕ_{u_0} : then $X(\Sigma)$ admits a line bundle associated to this function.

Consider the action of $(\mathbb{C}^*)^3$ on \mathbb{C}^6 with coordinates $(x_1, x_2, x_3, y_1, y_2, y_3)$ given by the matrix of weights

$$A = \begin{bmatrix} 0 & 1 & 1 & -2 & 0 & 0 \\ 1 & 0 & 1 & 0 & -2 & 0 \\ 1 & 1 & 0 & 0 & 0 & -2 \end{bmatrix}$$

The ring of invariants is generated by $z_1 = x_1^2 y_2 y_3$, $z_2 = x_2^2 y_1 y_2$, $z_3 = x_3^2 y_1 y_2$ and $w = x_1 x_2 x_3 y_1 y_2 y_3$ with the relation $z_1 z_2 z_3 = w^2$.

Let us consider a basis $(f_1, f_2, f_3, e_1, e_2, e_3)$ of \widehat{N} . The associated map $\pi : \widehat{N} \to N \to 0$ is given by the matrix

$$B = \begin{bmatrix} 2 & 0 & 0 & 0 & 1 & 1 \\ 0 & 2 & 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

where N is the lattice of index 2 in \mathbb{Z}^3 .

There are several ways of defining the fan of the GIT quotient (here its intersection with a hyperplane containg images of f_i 's as vertices of the outer triangle and images of e_i 's as •)

There are several ways of defining the fan of the GIT quotient (here its intersection with a hyperplane containg images of f_i 's as vertices of the outer triangle and images of e_i 's as •)

The convexity condition for $u_0 \in P$ says $u_0(2e_i - f_j - f_k) \ge 0$, for $i \ne j \ne k \ne i$, if we want the images of the rays of σ^+ in the fan Σ . This defines two dual cones $Mov \subset P_{\mathbb{R}}$ of admissible u_0 's and $Ess \subset P_{\mathbb{R}}^{\vee}$ of conditions defining them.

Now case \triangle requires $u_0(e_i + e_j - e_k - f_k) > 0$ for $i \neq j \neq k \neq i$ so we can take $\hat{u}_0 = (0, 0, 0, 1, 1, 1)$. On the other hand, to get \triangle we take u_0 with $u_0(e_2 + e_3 - e_1 - f_1) < 0$, $u_0(2e_2 - f_1 - f_3) > 0$, $u_0(2e_3 - f_1 - f_2) > 0$, hence we use $\hat{u}_0 = (1.5, 0, 0, 1, 1, 1)$. See Example 1 at

www.mimuw.edu.pl/~jarekw/java/Pragmatic2010JavaView.html

$z_1 z_2 z_3 = w^2$, explicit resolution

Look again at \triangle and remember that this is a projection of σ^+ . The faces of σ^+ which are not seen at this picture are the sets of unstable points, there are six components of them: $\{x_i = y_i = 0\}$ are related to faces $\langle f_i, e_i \rangle$ and $\{x_i = x_j = 0\}$ come from $\langle f_i, f_j \rangle$, for $i \neq j$.

The set of semistable points is covered by four invariant affine sets: $\mathbb{C}^6 \setminus \{x_1x_2x_3 = 0\}, \mathbb{C}^6 \setminus \{y_1x_2x_3 = 0\}, \mathbb{C}^6 \setminus \{x_1y_2x_3 = 0\}, \mathbb{C}^6 \setminus \{x_1x_2y_3 = 0\}.$

$z_1 z_2 z_3 = w^2$, explicit resolution

The inner cone in \triangle is the image of $\langle e_1, e_2, e_3 \rangle$ hence it is related to the \mathbb{T}_P invariant subalgebra of $\mathbb{C}[x_i^{\pm 1}, y_i]$ which is generated by $w/z_i = (y_i/x_i)x_jx_k$ for $i \neq j \neq k \neq i$. Note that $z_i = (w/z_j) \cdot (w/z_k)$ so the maximal ideal in $\mathbb{C}[z_1, z_2, z_3, w]/(z_1z_2z_3 - w^2)$ extends to the ideal of three lines $\{w/z_i = w/z_j = 0\}$.

An outer cone in \triangle is the image of $\langle f_1, e_2, e_3 \rangle$ hence it is related to \mathbb{T}_P invariants of $\mathbb{C}[x_1, x_2^{\pm 1}, x_3, y_1^{\pm 1}, y_2, y_3]$ generated by $w/z_2 = (y_2/x_2)x_1x_3$, $w/z_3 = (y_3/x_3)x_1x_2$ and $z_1/w = x_1/(y_1x_2x_3)$. What is the extension of the maximal ideal now?

embedded resolution of \mathbb{A}_1

A blow-up of \mathbb{C}^3 at the origin can be described in terms of an action of \mathbb{C}^* of $\mathbb{C}^4 = (x'_1, x'_2, x'_3, y')$ with weights (1, 1, 1, -1), the coordinates of \mathbb{C}^3 are then $z_i = x'_i y'$. Take zero set of $z_1 z_2 - z_3^2$; its irreducible inverse is $x'_1 x'_2 - {x'_3}^2$.

embedded resolution of \mathbb{A}_1

Take the map $\mathbb{C}[x'_1, x'_2, x'_3, y'] \longrightarrow \mathbb{C}[x_1, x_2, y]$, where the latter variables have grades (1, 1, -2) such that $(x'_1, x'_2, x'_3, y') \mapsto (x_1^2, x_2^2, x_1 x_2, y)$. Its image is the even graded part of $\mathbb{C}[x_1, x_2, y]$ and its kernel is $(x'_1 x'_2 - {x'_3}^2)$ thus $\mathbb{C}[x'_1, x'_2, x'_3, y']/(x'_1 x'_2 - {x'_3}^2) \subset \mathbb{C}[x_1, x_2, y]$ and both have the same Proj.

However the former one is not quite what we want!

We want to get a functorial object, the Cox ring.

the Cox ring, 1st view

Let $V \subset \mathbb{C}^n$ be an affine variety with coordinate ring A. Suppose that it admits a resolution of singularities $\widehat{V} \to V$ and assume that $\operatorname{Pic}(\widehat{v}/V)$ is a lattice with a basis L_1, \ldots, L_r . The Cox ring of $\widehat{V} \to V$ is an A-algebra

$$\widehat{A} = \bigoplus \Gamma(\mathcal{O}(m_1L_1 + \dots + m_rL_r))$$

with \mathbb{Z}^r grading. We will consider good singularities for which $\widehat{V} \to V$ will be crepant.

the Cox ring, 1st view

In our situation (take this as an assumption, if you want):

- \widehat{A} is finitely generated \mathbb{C} -algebra with $(\mathbb{C}^*)^r$ action
- A is the ring of invariants of \widehat{A} under the induced $(\mathbb{C}^*)^r$ action
- all crepant (good) resolutions of V are GIT quotients of $\operatorname{Spec} \widehat{A}$
- the toric case works nicely: take $\sigma \subset N_{\mathbb{R}}$ a (pointed) cone with generators of rays lying on an affine hyperplane, no lattice points lying below that hyperplane and the points on that hyperlane being vertices of a unimodular triangulation

Atiyah flop, Mukai flop

Take \mathbb{C}^* action on $\mathbb{C}^r \times \mathbb{C}^s$ with coordinates (x_i, y_j) and weights 1 for x_i 's and -1 for y_j 's. The quotient is toric singularity associated to cone spanned by s vectors e_i and r vectors f_j in the lattice of rank r + s - 1 with one relation $\sum e_i = \sum f_j$. If r = s this admits two crepant resolutions associated to two unimodular triangulations: one in which we omit consecutive e_i 's, the other in which we omit f_j 's. Find the affine pieces of covering, they should be of type $\operatorname{Spec} \mathbb{C}[x_i/x_1, x_1y_j]$.

Verify it by looking at the cone over Segre embedding of $\mathbb{P}^{r-1} \times \mathbb{P}^{r-1}$.

Atiyah flop, Mukai flop

Consider the quadric hypersurface $\{\sum_i x_i y_i = 0\} \subset (\mathbb{C}^r)^2$ which is invariant with respect to the \mathbb{C}^* action. Take the symplectic form $\omega = \sum_i (dx_i \wedge dy_i)$ and evaluate it on the vector field $\sum_i (x_i \partial_{x_i} - y_i \partial_{y_i})$ which is tangent to the \mathbb{C}^* action. The result is $\sum_i (x_i dy_i + y_i dx_i)$, the derivative of the defining equation.

This implies that ω descends to a symplectic form on the quotient(s). See it in local coordinates.

Another view: standard symplectic form on the cotangent bundle od \mathbb{P}^{r-1} .

This way for r > 1 we get the only isolated singularity with symplectic resolution.

more symplectic resolutions

See Example 1A at

www.mimuw.edu.pl/~jarekw/java/Pragmatic2010JavaView.html

resolution of \mathbb{D}_4

Take a hyperplane section of the singularity $z_1z_2z_3 = w^2$ defined by the relation $z_1 + z_2 + z_3 = 0$. The lift-up of this hyperplane to the resolution discussed above has one singular point of type \mathbb{A}_1 because

$$z_1 + z_2 + z_3 = \frac{w}{z_1} \cdot \frac{w}{z_2} + \frac{w}{z_1} \cdot \frac{w}{z_3} + \frac{w}{z_2} \cdot \frac{w}{z_3}$$

(Check that there are no other singular points in other affine sets of the covering.)

We can do the embedded resolution but this will not yield the Cox ring.

problems

For the start, let us consider two classes of quotient singularities:

• surface Du Val or $\mathbb{A} - \mathbb{D} - \mathbb{E}$ singularities:

•
$$x^{n+1} + y^2 + z^2 = 0$$

• $x^{n-1} + xy^2 + z^2 = 0$
• $x^4 + y^3 + z^2 = 0, x^3y + y^3 + z^2 = 0, x^5 + y^3 + z^2 = 0$

• 4-dimensional quotient symplectic singularities: wreath product of $\mathbb{A} - \mathbb{D} - \mathbb{E}$ and \mathbb{Z}_2

problems

- find the Cox ring of these singularities
- find the structure of of Mov and its division by flopping classes