Schubert varieties, equivariant cohomology and characteristic classes
DOI: 10.4171/182
Editors:
- Jarosław Buczyński (University of Warsaw; Polish Academy of Sciences), jabu*at*mimuw.edu.pl
- Mateusz Michałek (Max Planck Institute in Leipzig; Polish Academy of Sciences), wajcha2*at*poczta.onet.pl
- Elisa Postighel (Loughborough University), elisa.postinghel*at*gmail.com
List of contributions
- P. Pragacz: Friedrich Hirzebruch – a handful of reminiscences
- S. Cho and T. Ikeda: Pieri rule for the factorial Schur $P$-functions
- I. Coskun: Restriction varieties and the rigidity problem
- L. Gatto and P. Salehyan: On Plücker Equations Characterizing Grassmann Cones
- T. Hudson and T. Matsumura: Kempf–Laksov Schubert classes for even infinitesimal cohomology theories
- T. Katsura: On the multicanonical systems of quasi-elliptic surfaces in characteristic 3
- L. Maxim and J. Schürmann: Characteristic classes of mixed Hodge modules and applications
- P. Pragacz: On a certain family of $U(\mathfrak{b})$-modules
- R. Rimanyi and A. Varchenko: Equivariant Chern-Schwartz-MacPherson classes in partial flag varieties: interpolation and formulae
- T. Sasajima and T. Ohmoto: Thom polynomials in $\mathcal A$-classification I: counting singular projections of a surface
- H. Tamvakis: Schubert polynomials and degeneracy locus formulas
- S. Yokura: Hirzebruch $\chi_y$-genera of complex algebraic fiber bundles – the multiplicativity of the signature modulo 4
- M. Zielenkiewicz: Pushing-forward Schur classes using iterated residues at infinity
The choice of topics is motivated by the scientific range of the conference
IMPANGA15, 12-18 April 2015, Będlewo, Poland.
Dedication
We dedicate the volume as a whole to the memory of
Friedrich Hirzebruch (1927-2012).