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Porous materials

The structure
A porous medium: any medium in which are present a
matrix and a void space.
In a porous medium the water (or any other fluid) flows
through a very complex network of pores and capillaries.
The latter form the void space of the medium.

The flow
The “boundaries” of this flow are the microscopic interfaces
between solid and fluid(s).
⇒ the complete study of the hydrodynamics at the
micro-scale is very involved!
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Continuum approach

To avoid such a difficulty, we may address the problem from
a macro-scale.
At this scale the quantities involved in the problem can be
measured.

Continuum approach:

the real medium it is substituted by an “artificial” model, in
which any phase (liquid and air, for instance) is view as a
continuum filling all the medium.
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Continuum approach: how can we define a
quantity?

For instance: we want to know the density ρ of the medium in a point
x.

I Imagine to expand an ideal sphere (whose center is x)

I At every step, measure the value of the density averaged on the
sphere

I Increasing the radius: we get different values (random structure of
the medium)

There is an interval of the sphere radius in which the value of ρ

becomes stable!
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Continuum approach (ctd.)

We can fix a radius R belonging to this interval
We call REV (Representative Element Volume) the
sphere whose radius is R.

Conclusion:
Any quantity defined at the macroscopic scale in a point x
has to be thought as a quantity averaged on the REV
centered in x.
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Darcy’s law

Definitions:

I Porosity : φ =
volume of the void space

volume of the REV
I Saturation (assume only one fluid flowing through the

medium):

S =
volume of fluid

volume of the void space
,

I The medium is saturated (namely all the void space is
occupied by the fluid), if S = 1.

I Specific discharge, q: the flux of fluid per unit area
of the surface, (dims. LT−1).
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Darcy’s law (ctd.)

Darcy’s experiment

To determine the law linking q to the water pressure, the French

engineer Henry Darcy, studying the system of water fountains of

its city, Dijon, built up a particular experiment, reported in its

famous book Les Fontaines Publiques de la Ville de Dijon (1856).
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Darcy’s law (ctd.)

Darcy measured the relationship between q and the
hydraulic head h, defined as

h = z + pw/ρg ,

where z is the quote at which the water is raised, pw is the
water pressure and g is the gravity acceleration.
He found a proportionality relation between discharge Q
(volume of water per unit time) and increment of the
hydraulic head with respect to the quote, i.e.

Q = K A
h1 − h2

L

where A is the area of the column section and L its length.
The coefficient K is called hydraulic conductivity.
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Generalization of Darcy’s law
I In a differential form:

q = −K
∂h

∂z
= −K

∂

∂z

(
pw

ρ g
+ z

)
I If density and/or the viscosity are not constant:

q = −k

µ

∂

∂z
(pw + ρgz)

where k is the medium permeability and µ is the fluid
viscosity. We have:

K = k
ρ

µ
g , [k] = L2

k : property of the medium; ρ, µ: properties of the fluid
I Generalized form of Darcy’s law:

q = −k

µ
(∇p − ρg) ,

where p is the pressure and g is the gravity vector.
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Heat and mass transfer in porous media

Definitions and notation
Three phases (unsaturated case):

I a = air (inert gas)

I v = vapour

I w = water

I =⇒ g = v + a = gas mixture = vapour + air

I φ porosity

I Sα = saturation of phase α = w , g

I ρα = density of phase α = w , g

I ρi = density of species i (w.r.t. the gas volume),i = v , a

I =⇒ Sg = Sv + Sa; Sw + Sg = 1
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Definitions (ctd.)

I pw , pv = water and vapour pressure

I P = (total) gas pressure ⇒ (P − pv ) = air pressure

I pc = P − pw = capillary pressure of the liquid phase
(see later on)

I ⇒ pw = P − pc
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Mass balance

∂

∂t
(ρwφSw ) +∇ · Jw = −Γ̇ (1)

∂

∂t
(ρvφSg ) +∇ · Jv = +Γ̇ (2)

∂

∂t
(ρaφSg ) +∇ · Ja = 0 (3)

where Γ̇ is the evaporation rate and Jα is the total mass flux
of phase α.
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Expression of fluxes
Vapour:

Jv = ρv qv︸︷︷︸ + jv︸︷︷︸ (4)

Darcy’s flux due to flux of (binary)
pressure gradient diffusion

We have (gravity is neglected):

qv = −ksatkg

µg
∇P (5)

jv = −
(

D∇
(pv

P

))
(6)

where

I ksat , saturated permeability

I kg = kg (Sg ), relative permeability

I µg , viscosity
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Expression of fluxes (ctd.)

Similarly, for air:

Ja = −ρa
ksatkg

µg
∇P︸ ︷︷ ︸ −

(
D∇

(
P − pv

P

))
︸ ︷︷ ︸ (7)

Flux due to pressure binary diffusion
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Expression of fluxes (ctd.)

Water:

Jw = ρw qw

= −ρw
ksatkw

µw
∇ [(P − pc )− ρw g] (8)

Here the gravity may play a “significant” role, so that we
include it in the Darcy’s flux.
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Constitutive eq.s

Capillary pressure
pc = pc (Sw ,T ).
For instance, Leverett’ function:

pc (Sw ,T ) =

√
φ

ksat
σ(T )f (Sw ) ,

where:
Sw ,r , irreducible water saturation,
T , temperature.
σ(T ) = σ0 − βT , surface tension.

f (Sw ) = 0.364
“

1− e(−40(1−Sw ))
”

+ 0.221(1− Sw ) +
0.005

Sw − Sw,r
.

...or many other forms (vanGenuchten, Brooks & Corey,
etc.)
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Constitutive eq.s (ctd.)

Relative permeability:

kw = kw (Sw )

kg = kg (Sw ).

Example (Verma et al., 1985):

kw = (Seff )3 =

(
Sw − Sw ,r

1− Sw ,r

)3

, for Sw ≥ Sw ,r

kg = a + bSeff + cS2
eff , a, b, c = const.

or many other forms (e.g. Mualem, Corey, Grant).
Liquid viscosity & density (only in case of high temperature

and/or pressure gradient):

µw = µw (T ), ρw = ρw (pw ,T ).
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Constitutive eq.s (ctd.)

Moreover, the perfect gas law for vapour and air

ρv = pv
Mv

RT
(9)

ρa = (P − pv )
Ma

RT
(10)

with Mv and R constants.
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More on water flux...

In particular, exploiting the expression for the capillary
pressure in the Darcian water flux qw , we have

Jw = −ρw
ksatkw

µw
∇ (P − ρw g)︸ ︷︷ ︸ −Ds∇Sw − DT∇T︸ ︷︷ ︸

Darcy’s flux Capillary flux due to
saturation & temperature
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Energy balance

∂

∂t

(
ρs(1− φ)hs +

∑
α

ραφSα

)
+
∑
α

hαJα =

∇ · (λmix∇T ) + (hv − hw ) Γ̇, (11)

where:

I subscript ( )s refers to the solid matrix

I hα, enthalpy of phase α

I λmix = λs(1− φ) + φ
∑

α λαSα, thermal conductivity of
the mixture.
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Closure to the system

Exploiting the expression of fluxes and the constitutive laws
in mass and energy balance, we have:

4 eq.s (1), (2), (3), (11)

5 unknowns P, pv ,Sw ,T , Γ̇

-1

2 options for closure:

The description of evaporation can be based on either

1. Equilibrium

2. Non-equilibrium

condition
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Closure to the system (ctd.)

Equilibrium:
we assume there is a water-vapour equilibrium relation:

pv = F (Sw ,T ) (12)

and sum mass balance of water and vapour [(1) + (2)], so
that Γ̇ disappears!
For instance, Kelvin’s equation:

pv = psat
v (T ) exp

{
−Mv pc (Sw )

ρw RT

}
, (13)

which is derived from Clapeyron’s eq., assuming a local
thermodynamic equilibrium.
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Closure to the system (ctd.)

Non-equilibrium:
we assume there is an equilibrium value for pv ,

pv ,eq = F (Sw ,T ) (14)

and the evaporation rate is defined as

Γ̇ = γ (pv ,eq − pv ) (15)

This approach has to be used if the time to reach the
equilibrium is much longer than the time scale of the
evaporation process (e.g. fast drying process in food
industry).
In this case Γ̇ is a function of pv , so that we have 4 eq.s
and 4 unknowns.
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Boundary conditions on the external surface

In general, outside the domain, the following conditions are
known:

I Air pressure

I Temperature

I Relative humidity:

H =
pv

psat
v (T )

. (16)

Assuming an equilibrium condition for the vapour pressure
(Kelvin’s eq.), (16) is related to Sw ,

H = exp

{
−Mv pc(Sw )

ρw RT

}
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Boundary conditions (ctd.)

Under these assumptions, the conditions on the boundary
are:

1. Mass flux: ∇H · n = ν (H − Hext).

2. Pressure: (P − pv ) = Pair
ext

3. Temperature: T = Text

Remark : in condition 1, the coefficient ν represents the
“interface effect” (permeability of the boundary) .
As ν →∞ ⇒ high permeability: the effect vanishes and the
condition is

H = Hext

As ν → 0 ⇒ low permeability: no flux condition
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Possible simplifications

Analysing the physics of the process, one may assume:

1. Air (inert gas) is always at the same pressure.
I pa = (P − pv ) = const.
I Only eq.s for water & vapour

2. Capillarity as primary mode, pc � P
I ∇P ≈ 0
I The process is driven by the capillary gradient ⇒ only

equation for water.

3. Sharp interface
I A sharp interface divides the dry region (Sw ≡ Sw ,r ) to

the wet region.
I All the evaporation takes place at the interface
I We obtain a free boundary problem

4. Isothermal condition, when T ≈ const.
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Generalization: shrinkage

If the initial porosity (= before the drying) is quite large, the
loss of water may cause a significant stress within the
structure of the medium.
Then, the porosity φ is no longer constant and the
problem becomes very involved!

In particular:

In the mass balance, among the fluxes, we have to include
the one describing the movement of the matrix (since
Darcy’s law refers to flow relative to the skeleton!)
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Shrinkage (ctd.)

The simplest way to model this process is the definition of a
constitutive law between porosity ans water saturation,

φ = F(Sw ) (17)

For instance:
Linear:

φ = φ(0) + c1

(
S

(0)
w − Sw

S
(0)
w

)
.

Nonlinear (cubic):

φ = φ(0) + c2

(
S

(0)
w − Sw

S
(0)
w

)3

.

and many other forms (see Mayor, J. Food Eng., 2004)
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The simpler problem in isothermal conditions
(T = const.)

This approach can be applied whenever the drying takes
place in a “natural” environment (=not forced drying).

Assume also

I Constant air pressure, pa = (P − pv ) = const.
Therefore: rescale pa to 0, so that P = pv

I Equilibrium condition (Kelvin’s equation): pv = pv (Sw ).
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The isothermal case (ctd.)

Under these conditions, the system simplifies to

∂

∂t
[ρwφSw + ρvφ(1− Sw )] =

−∇ ·
»
ρw

ksatkw

µw

„
dpc

dSw
− dpv

dSw
− ρw g

«
+ ρv

ksatkg

µg

dpv

dSw

–
∇Sw

ff
+ EOS: ρv = ρv (pv ) ; pc = pc(Sw ); kα = kα(Sw )

Only 1 equation (in Sw ), even if strongly nonlinear!
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External B.C.

We assume a condition on the relative humidity. Since
T = const., saturated vapour pressure is a constant: psat

v .
Therefore, the condition on the relative humidity becomes a
condition on pv (and in turn on Sw )!
Remember:

H =
pv

psat
v

=
1

psat
v

pv (Sw )

Thus, the B.C. ∇H = ν (H − Hext) reads as:

∇ [pv (Sw )] = ν
(
pv (Sw )− Hextpsat

v

)
which is a Robin’s condition for Sw .
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Some references
For a complete introduction on porous media:

I J. Bear, Dynamics of fluids in porous media, 1972
(or any other book by J. Bear).

For a rigorous derivation of the eq.s (from micro- to macro-scale):

I S. Whitaker, Simultaneous heat, mass and momentum
transfer in porous media: a theory of drying, Advances in
Heat Transfer, 13 (1972), 119–203.

A review on modelling the drying in food processes:

I A.K. Datta, Porous media approaches to studying
simultaneous heat and mass transfer in food processes. I:
Problem formulations, Journal of Food Engineering, 80, Issue
1 (2007), 80–95.

A review on the shrinkage in food processes:

I L. Mayor and A. M. Sereno, Modelling shrinkage during
convective drying of food materials: a review, Journal of
Food Engineering, 61, Issue 3 (2004), 373–386
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