Fermat's Last Theorem in the XIX ${ }^{\text {th }}$ century

Arkadiusz Męcel
am234204@students.mimuw.edu.pl
http://students.mimuw.edu.pl/~am234204/

Faculty of Mathematics, Informatics and Mechanics University of Warsaw

Fermat's Hypothesis...

test

- $2+2=5$

Theorem. The Diophantine equation:

$$
x^{n}+y^{n}=z^{n}
$$

where x, y, z, n are nonzero integers, has no nonzero solutions for $n>2$.

I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.

Pierre de Fermat - around 400 years before...

Fermat's Hypothesis...

Theorem. The Diophantine equation:

$$
x^{n}+y^{n}=z^{n}
$$

where x, y, z, n are nonzero integers, has no nonzero solutions for $n>2$.

I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.

Pierre de Fermat - around 400 years before...

Proof [Wiles, 1995]. Every semistable elliptic curve over \mathbb{Q} is modular.

The spring of the year 1847

The spring of the year 1847

Lamé's idea [The meeting of the Paris Academy, 1847]. We have to decompose $x^{n}+y^{n}$ completely into n linear factors - if $\zeta^{n}=1, \zeta \neq 1$, n - odd then:

$$
x^{n}+y^{n}=(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{n-1} y\right)=z^{n}
$$

The spring of the year 1847

Lamé's idea [The meeting of the Paris Academy, 1847]. We have to decompose $x^{n}+y^{n}$ completely into n linear factors - if $\zeta^{n}=1, \zeta \neq 1$, n - odd then:

$$
x^{n}+y^{n}=(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{n-1} y\right)=z^{n}
$$

Two possible cases:

1. x, y are such that $x+y, x+\zeta y, x+\zeta^{2} y, \ldots, x+\zeta^{n-1} y$ are relatively prime.
2. They are not such, but there is a common factor m, that when divided by it, they are.

The spring of the year 1847

Lamé's idea [The meeting of the Paris Academy, 1847]. We have to decompose $x^{n}+y^{n}$ completely into n linear factors - if $\zeta^{n}=1, \zeta \neq 1$, n - odd then:

$$
x^{n}+y^{n}=(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{n-1} y\right)=z^{n}
$$

Two possible cases:

1. x, y are such that $x+y, x+\zeta y, x+\zeta^{2} y, \ldots, x+\zeta^{n-1} y$ are relatively prime.
2. They are not such, but there is a common factor m, that when divided by it, they are.

Lamé's collorary. From (\star), each of these relatively prime factors must itself be an n - th power, thus we can derive an impossible infinite descent.

The spring of the year 1847

Remark (Liouville). The collorary is uncertain. We do not know whether the numbers of form:

$$
a_{1}+a_{2} \zeta+a_{3} \zeta^{2}+\ldots+a_{n-1} \zeta^{n-1}, a_{i} \in \mathbb{Z}
$$

posess the property of unique factorization into irreducible elements.

The spring of the year 1847

Remark (Liouville). The collorary is uncertain. We do not know whether the numbers of form:

$$
a_{1}+a_{2} \zeta+a_{3} \zeta^{2}+\ldots+a_{n-1} \zeta^{n-1}, a_{i} \in \mathbb{Z}
$$

posess the property of unique factorization into irreducible elements.

Theorem (Kummer, 1844). If $\zeta \neq 1$, $\zeta^{23}=1$ then $1-\zeta+\zeta^{21} \in \mathbb{Z}\left[\zeta_{23}\right]$ is an irreducible element, which is not prime.

The spring of the year 1847

Remark (Liouville). The collorary is uncertain. We do not know whether the numbers of form:

$$
a_{1}+a_{2} \zeta+a_{3} \zeta^{2}+\ldots+a_{n-1} \zeta^{n-1}, a_{i} \in \mathbb{Z}
$$

posess the property of unique factorization into irreducible elements.

Theorem (Kummer, 1844). If $\zeta \neq 1$, $\zeta^{23}=1$ then $1-\zeta+\zeta^{21} \in \mathbb{Z}\left[\zeta_{23}\right]$ is an irreducible element, which is not prime.

Theorem (Masley, 1976). There are only 29 values of $n \in \mathbb{N}_{+}$such, that $\mathbb{Z}[\zeta]$ is a UFD. The smallest n, for which unique factorization fails, is 23.

Saving unique factorization

Example (Irreducible, but not prime). $\mathbb{Z}[\sqrt{-5}]$ is not UFD since:

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

Saving unique factorization

Example (Irreducible, but not prime). $\mathbb{Z}[\sqrt{-5}]$ is not UFD since:

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

Kummer's idea. Extend the set of prime factors to have:

$$
\begin{aligned}
6 & = \\
& =\left(P_{1} \cdot P_{2}\right) \cdot\left(P_{3} \cdot P_{4}\right)
\end{aligned}=\left(P_{1} \cdot P_{3}\right) \cdot\left(P_{2} \cdot P_{4}\right), ~ l a \sqrt{-5} \cdot 1-\sqrt{-5},
$$

where $P_{1}, P_{2}, P_{3}, P_{4}$ are ideal prime factors.

Saving unique factorization

Example (Irreducible, but not prime). $\mathbb{Z}[\sqrt{-5}]$ is not UFD since:

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

Kummer's idea. Extend the set of prime factors to have:

$$
\begin{aligned}
6 & = \\
& =\left(P_{1} \cdot P_{2}\right) \cdot\left(P_{3} \cdot P_{4}\right)
\end{aligned}=\left(P_{1} \cdot P_{3}\right) \cdot\left(P_{2} \cdot P_{4}\right), ~ l a \sqrt{-5} \cdot 1-\sqrt{-5},
$$

where $P_{1}, P_{2}, P_{3}, P_{4}$ are ideal prime factors.

HOW TO CONSTRUCT THESE 'IDEAL FACTORS'?

Ideal factors

Kummer's ideal factors [1846]. We expect that:

$$
\begin{gathered}
P \mid 0 \\
P|x, P| y \Rightarrow P \mid x \pm y \\
P|x \Rightarrow P| x y, \text { for all } y \in \mathbb{Z}[\sqrt{-5}]
\end{gathered}
$$

Ideal factors

Kummer's ideal factors [1846]. We expect that:

$$
\begin{gathered}
P \mid 0 \\
P|x, P| y \Rightarrow P \mid x \pm y \\
P|x \Rightarrow P| x y, \text { for all } y \in \mathbb{Z}[\sqrt{-5}] .
\end{gathered}
$$

The additional property of prime ideal factor should be:

$$
P|x y \Rightarrow P| x \text { or } P \mid y
$$

Ideal factors

Kummer's ideal factors [1846]. We expect that:

$$
\begin{gathered}
P \mid 0 \\
P|x, P| y \Rightarrow P \mid x \pm y \\
P|x \Rightarrow P| x y, \text { for all } y \in \mathbb{Z}[\sqrt{-5}] .
\end{gathered}
$$

The additional property of prime ideal factor should be:

$$
P|x y \Rightarrow P| x \text { or } P \mid y .
$$

Theorem (Kummer, 1846). If two cyclotomic integers $g(\zeta)$ and $h(\zeta)$ are divisible by exactly the same prime ideal divisors with exactly the same multiplicities, then they differ only by a unit multiple.

Ideal factors

Dedekind's ideals [1871]. A subset P of the considered ring R, that satisfies:

$$
\begin{gathered}
0 \in P \\
x \in P, y \in P \Rightarrow x \pm y \in P \\
x \in P \Rightarrow x y \in P, \text { for all } y \in R
\end{gathered}
$$

The additional property of prime ideal is:

$$
x y \in P \Rightarrow x \in P \text { or } y \in P .
$$

Ideal factors

Dedekind's ideals [1871]. A subset P of the considered ring R, that satisfies:

$$
\begin{gathered}
0 \in P \\
x \in P, y \in P \Rightarrow x \pm y \in P \\
x \in P \Rightarrow x y \in P, \text { for all } y \in R
\end{gathered}
$$

The additional property of prime ideal is:

$$
x y \in P \Rightarrow x \in P \text { or } y \in P .
$$

Remark. Dedekind proved the generalization of Kummer's theorem on unique factorization for a wider class of rings, later called Dedekind domains. Noether proved that it is the only class of rings with that property.

Ideal factors

Kummer's idea. Extend the set of prime factors to have:

$$
\begin{aligned}
& 6=2 \cdot 3=1+\sqrt{-5} \cdot 1-\sqrt{-5} \\
& =\left(P_{1} \cdot P_{2}\right) \cdot\left(P_{3} \cdot P_{4}\right)=\left(P_{1} \cdot P_{3}\right) \cdot\left(P_{2} \cdot P_{4}\right) .
\end{aligned}
$$

Ideal factors

Kummer's idea. Extend the set of prime factors to have:

$$
\begin{aligned}
& 6=2 \cdot 3=1+\sqrt{-5} \cdot 1-\sqrt{-5} \\
& =\left(P_{1} \cdot P_{2}\right) \cdot\left(P_{3} \cdot P_{4}\right)=\left(P_{1} \cdot P_{3}\right) \cdot\left(P_{2} \cdot P_{4}\right) .
\end{aligned}
$$

Dedekind's idea. Exchange numbers for ideals. Then:

$$
\begin{aligned}
(6) & =(2) \quad \cdot(3) \\
& =\left(P_{1} \cdot P_{2}\right) \cdot\left(P_{3} \cdot P_{4}\right)=(1+\sqrt{-5}) \cdot(1-\sqrt{-5}) \\
& =\left(P_{1} \cdot P_{3}\right) \cdot\left(P_{2} \cdot P_{4}\right)
\end{aligned}
$$

where:

$$
\begin{array}{ll}
P_{1}=(2,1+\sqrt{-5}), & P_{2}=(2,1-\sqrt{-5}), \\
P_{3}=(3,1+\sqrt{-5}), & P_{4}=(3,1-\sqrt{-5}) .
\end{array}
$$

This is not enough...

Lamé's idea [The meeting of the Paris Academy, 1847]. We have to decompose $x^{n}+y^{n}$ completely into n linear factors - if $\zeta^{n}=1, \zeta \neq 1$, n - odd then:

$$
x^{n}+y^{n}=(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{n-1} y\right)=z^{n}
$$

Even if we exchange numbers for ideals:

$$
(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{n-1} y\right)=(z)^{n}
$$

and even if they are relatively prime, all we get from the unique factorization is:

$$
\left(x+\zeta^{k} y\right)=J_{k}^{n}
$$

for some J_{k} - ideals of $\mathbb{Z}\left[\zeta_{n}\right]$.

Equivalent ideals

Definition (Ideal class). Let R by any integral domain. We say that two nontrivial ideals A, B of R are in the same ideal class (which we denote as $A \sim B$) if and only if there exist principal ideals I, J such that $A I=B J$.

Equivalent ideals

Definition (Ideal class). Let R by any integral domain. We say that two nontrivial ideals A, B of R are in the same ideal class (which we denote as $A \sim B$) if and only if there exist principal ideals I, J such that $A I=B J$. Ideal classes can be multiplied:

1. The multiplication $[A][B]=[A B]$ is well defined and commutative.
2. The principal ideals form the ideal class, which serves as an identity element for this multiplication.

Equivalent ideals

Definition (Ideal class). Let R by any integral domain. We say that two nontrivial ideals A, B of R are in the same ideal class (which we denote as $A \sim B$) if and only if there exist principal ideals I, J such that $A I=B J$. Ideal classes can be multiplied:

1. The multiplication $[A][B]=[A B]$ is well defined and commutative.
2. The principal ideals form the ideal class, which serves as an identity element for this multiplication.

Remark. In every Dedekind domain R, if A is a nontrivial ideal, then there exists an ideal B such that $A B$ is principal.

Equivalent ideals

Definition (Ideal class). Let R by any integral domain. We say that two nontrivial ideals A, B of R are in the same ideal class (which we denote as $A \sim B$) if and only if there exist principal ideals I, J such that $A I=B J$.

Ideal classes can be multiplied:

1. The multiplication $[A][B]=[A B]$ is well defined and commutative.
2. The principal ideals form the ideal class, which serves as an identity element for this multiplication.

Remark. In every Dedekind domain R, if A is a nontrivial ideal, then there exists an ideal B such that $A B$ is principal.

Collorary. For every Dedekind domain R, the set of its ideal classes forms an abelian group called: ideal class group. If it is finite (not truth in general), its order is called class number.

Half-factorial domains

Observation. The order of the ideal class group tells us how much 'non - UFD' can a particular Dedekind domain be.

Half-factorial domains

Observation. The order of the ideal class group tells us how much 'non - UFD' can a particular Dedekind domain be.

Unique factorization domain. Let R be a Dedekind domain. We say that R is an UFD if and only if $a_{1} a_{2} \ldots a_{n}=b_{1} b_{2} \ldots b_{m}, a_{i}, b_{j}$ - irreducibles, implies that:

1. $n=m$,
2. There exists $\sigma \in S_{n}$ such that $a_{i}, b_{\sigma(i)}$ are associates.

Half-factorial domains

Observation. The order of the ideal class group tells us how much 'non - UFD' can a particular Dedekind domain be.

Unique factorization domain. Let R be a Dedekind domain. We say that R is an UFD if and only if $a_{1} a_{2} \ldots a_{n}=b_{1} b_{2} \ldots b_{m}, a_{i}, b_{j}$ - irreducibles, implies that:

1. $n=m$,
2. There exists $\sigma \in S_{n}$ such that $a_{i}, b_{\sigma(i)}$ are associates.

Half-factorial domain. A Dedekind domain R that satisfies only (1).

Half-factorial domains

Observation. The order of the ideal class group tells us how much 'non - UFD' can a particular Dedekind domain be.

Unique factorization domain. Let R be a Dedekind domain. We say that R is an UFD if and only if $a_{1} a_{2} \ldots a_{n}=b_{1} b_{2} \ldots b_{m}, a_{i}, b_{j}$ - irreducibles, implies that:

1. $n=m$,
2. There exists $\sigma \in S_{n}$ such that $a_{i}, b_{\sigma(i)}$ are associates.

Half-factorial domain. A Dedekind domain R that satisfies only (1).

Theorem (Carlitz, 1960). Let R be a Dedekind domain. Then R has class number less or equal to 2 if and only if R is HFD.

The class number of cyclotomic integers

Theorem (Masley, 1976). Let m be an integer greater than 2, $m \neq 2 \bmod 4$. Then all the values of m, for which the cyclotomic integers $\mathbb{Z}\left[\zeta_{m}\right]$ have class number h_{m} with $2 \leq h_{m} \leq 10$ are listed in the table:

h_{m}	2	3	4	5	6	7	8	9	10
m	39	23	120	51	none	63	29	31	55
	56	52		80			68	57	
		72						96	

Furthermore, all the other values of m with $\phi(m)=\left[\mathbb{Q}\left[\zeta_{m}\right]: \mathbb{Q}\right] \leq 24$ give the twenty-nine values of m for which $h_{m}=1$:

$$
\begin{gathered}
3,4,5,7,8,9,11,12,13,15,16,17,19,20,21,24,25 \\
27,28,32,33,35,36,40,44,45,48,60,84
\end{gathered}
$$

FLT for regular primes

FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not divide the class number of $\mathbb{Z}\left[\zeta_{p}\right]$.

Announcement (Kummer, 1847). FLT holds for regular primes.

FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not divide the class number of $\mathbb{Z}\left[\zeta_{p}\right]$.

Announcement (Kummer, 1847). FLT holds for regular primes.
The key idea. If we restrict ourselves to the 'first case' of FLT, we can prove that $x+\zeta^{k} y$ are relatively prime for $0 \leq k \leq p-1$. Thus, in terms of ideals we have:

$$
(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{p-1} y\right)=(z)^{p} .
$$

FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not divide the class number of $\mathbb{Z}\left[\zeta_{p}\right]$.

Announcement (Kummer, 1847). FLT holds for regular primes.
The key idea. If we restrict ourselves to the 'first case' of FLT, we can prove that $x+\zeta^{k} y$ are relatively prime for $0 \leq k \leq p-1$. Thus, in terms of ideals we have:

$$
(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{p-1} y\right)=(z)^{p} .
$$

From the unique factorization we can deduce that: $\left(x+\zeta^{k} y\right)=J_{k}^{p}$.

FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not divide the class number of $\mathbb{Z}\left[\zeta_{p}\right]$.

Announcement (Kummer, 1847). FLT holds for regular primes.
The key idea. If we restrict ourselves to the 'first case' of FLT, we can prove that $x+\zeta^{k} y$ are relatively prime for $0 \leq k \leq p-1$. Thus, in terms of ideals we have:

$$
(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{p-1} y\right)=(z)^{p} .
$$

From the unique factorization we can deduce that: $\left(x+\zeta^{k} y\right)=J_{k}^{p}$.
In the class group:

$$
\left[\left(x+\zeta^{k} y\right)\right]=\left[J_{k}\right]^{p}
$$

The order of $\left[J_{k}\right]$ divides $\left|C l\left(\mathbb{Z}\left[\zeta_{p}\right]\right)\right|$. But it cannot, since p is regular! Thus J_{k} are principal.

FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not divide the class number of $\mathbb{Z}\left[\zeta_{p}\right]$.

Announcement (Kummer, 1847). FLT holds for regular primes.
The key idea. If we restrict ourselves to the 'first case' of FLT, we can prove that $x+\zeta^{k} y$ are relatively prime for $0 \leq k \leq p-1$. Thus, in terms of ideals we have:

$$
(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{p-1} y\right)=(z)^{p} .
$$

For some $\alpha_{k} \in \mathbb{Z}\left[\zeta_{p}\right]$ and invertible $u_{k} \in \mathbb{Z}\left[\zeta_{p}\right]^{*}$ we have:

$$
x+\zeta^{k} y=u_{k} \alpha_{k}^{p}
$$

FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not divide the class number of $\mathbb{Z}\left[\zeta_{p}\right]$.

Announcement (Kummer, 1847). FLT holds for regular primes.
The key idea. If we restrict ourselves to the 'first case' of FLT, we can prove that $x+\zeta^{k} y$ are relatively prime for $0 \leq k \leq p-1$. Thus, in terms of ideals we have:

$$
(x+y)(x+\zeta y)\left(x+\zeta^{2} y\right) \cdots\left(x+\zeta^{p-1} y\right)=(z)^{p} .
$$

For some $\alpha_{k} \in \mathbb{Z}\left[\zeta_{p}\right]$ and invertible $u_{k} \in \mathbb{Z}\left[\zeta_{p}\right]^{*}$ we have:

$$
x+\zeta^{k} y=u_{k} \alpha_{k}^{p}
$$

Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

Bernoulli numbers. A sequence B_{n} of signed rational numbers that can be defined by the identity:

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n} x^{n}}{n!}
$$

Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

Bernoulli numbers. A sequence B_{n} of signed rational numbers that can be defined by the identity:

$$
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n} x^{n}}{n!}
$$

They can be also defined recursively by setting $B_{0}=1$, and then using:

$$
\binom{k+1}{1} B_{k}+\binom{k+1}{2} B_{k-1}+\ldots+\binom{k+1}{k} B_{1}+B_{0}=0
$$

Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

Hypothesis. There are only finitely many irregular primes. Up to year 1871 Kummer had found only 8 of them:

$$
37,59,67,101,103,131,149,157 .
$$

Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

Theorem (Jensen, 1915). There are infinitely many irregular primes.

Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

Theorem (Jensen, 1915). There are infinitely many irregular primes.
Open question. Are there infinitely many regular primes? Are they exactly $e^{-\frac{1}{2}}$ of all primes?

Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

Theorem (Jensen, 1915). There are infinitely many irregular primes.
Open question. Are there infinitely many regular primes? Are they exactly $e^{-\frac{1}{2}}$ of all primes?

Definition (Irregularity index). A prime p has irregularity index sif p divides exactly s numerators of Bernoulli numbers B_{k} for $k=2,4, \ldots p-3$.

Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_{k} for $k=2,4, \ldots, p-3$.

Theorem (Jensen, 1915). There are infinitely many irregular primes.
Open question. Are there infinitely many regular primes? Are they exactly $e^{-\frac{1}{2}}$ of all primes?

Definition (Irregularity index). A prime p has irregularity index sif p divides exactly s numerators of Bernoulli numbers B_{k} for $k=2,4, \ldots p-3$.

Conjecture (Johnson, Wooldridge, 1975). As $p \rightarrow \infty$, the probability that p has index of irregularity r goes to:

$$
\left(\frac{1}{2}\right)^{r} \frac{e^{-\frac{1}{2}}}{r!}
$$

Euler regular primes

Definition (E - regular number, 1940). A prime p is E - regular if it divides one of Euler numbers $E_{2 n}$ with $0<2 n<p-1$.

Euler regular primes

Definition (E - regular number, 1940). A prime p is E - regular if it divides one of Euler numbers $E_{2 n}$ with $0<2 n<p-1$.

Definition (Euler numbers). A sequence E_{n} of signed integral numbers that can be defined by the identity:

$$
\frac{1}{\cosh (x)}=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{E_{n} x^{2 n}}{2 n!}, \quad|x|<\frac{\pi}{2}
$$

Euler regular primes

Definition (E - regular number, 1940). A prime p is E - regular if it divides one of Euler numbers $E_{2 n}$ with $0<2 n<p-1$.

Definition (Euler numbers). A sequence E_{n} of signed integral numbers that can be defined by the identity:

$$
\frac{1}{\cosh (x)}=\sum_{n=0}^{\infty}(-1)^{n} \cdot \frac{E_{n} x^{2 n}}{2 n!}, \quad|x|<\frac{\pi}{2}
$$

Theorem (Vandiver, 1940). The first case of FLT holds for E - regular primes.
Theorem (Carlitz, 1954). There are infinitely many E-irregular primes.
Conjecture. The E-irregular primes of index r satisfy a Poisson distribution.

Fermat's Hypothesis...

Theorem. The Diophantine equation:

$$
x^{n}+y^{n}=z^{n}
$$

where x, y, z, n are nonzero integers, has no nonzero solutions for $n>2$.

I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.

Pierre de Fermat - around 350 years before...

Proof [Wiles, 1995]. Every semistable elliptic curve over \mathbb{Q} is modular.

THE END

Thank you for your attention!

Arkadiusz Męcel
University of Warsaw am234204@students.mimuw.edu.pl
http://students.mimuw.edu.pl/~am234204/

