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am234204@students.mimuw.edu.pl

http://students.mimuw.edu.pl/ ˜am234204/

Faculty of Mathematics, Informatics and Mechanics

University of Warsaw

.



Fermat’s Hypothesis...

test
• 2 + 2 = 5

Theorem. The Diophantine equation:

xn + yn = zn,

where x, y, z, n are nonzero integers, has no nonzero solutions for n > 2.

***

I have discovered a truly marvellous proof of this,
which this margin is too narrow to contain.

Pierre de Fermat – around 400 years before...

.
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where x, y, z, n are nonzero integers, has no nonzero solutions for n > 2.

***

I have discovered a truly marvellous proof of this,
which this margin is too narrow to contain.

Pierre de Fermat – around 400 years before...

***

Proof [Wiles, 1995] . Every semistable elliptic curve over Q is modular.
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The spring of the year 1847

Lamé’s idea [The meeting of the Paris Academy, 1847]. We have to
decompose xn + yn completely into n linear factors – if ζn = 1, ζ 6= 1,
n – odd then:

xn + yn = (x + y) (x + ζy)
(

x + ζ2y
)

· · ·
(

x + ζn−1y
)

= zn. (⋆)
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· · ·
(

x + ζn−1y
)

= zn. (⋆)

Two possible cases:

1. x, y are such that x + y, x + ζy, x + ζ2y, . . . , x + ζn−1y are
relatively prime.

2. They are not such, but there is a common factor m, that when divided by
it, they are.
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Lamé’s idea [The meeting of the Paris Academy, 1847]. We have to
decompose xn + yn completely into n linear factors – if ζn = 1, ζ 6= 1,
n – odd then:

xn + yn = (x + y) (x + ζy)
(

x + ζ2y
)

· · ·
(

x + ζn−1y
)

= zn. (⋆)

Two possible cases:

1. x, y are such that x + y, x + ζy, x + ζ2y, . . . , x + ζn−1y are
relatively prime.

2. They are not such, but there is a common factor m, that when divided by
it, they are.

Lamé’s collorary. From (⋆), each of these relatively prime factors must itself
be an n – th power, thus we can derive an impossible infinite descent.

.



The spring of the year 1847

Remark (Liouville). The collorary is uncertain. We do not know whether the
numbers of form:

a1 + a2ζ + a3ζ
2 + . . . + an−1ζ

n−1, ai ∈ Z

posess the property of unique factorization into irreducible elements.
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The spring of the year 1847

Remark (Liouville). The collorary is uncertain. We do not know whether the
numbers of form:

a1 + a2ζ + a3ζ
2 + . . . + an−1ζ

n−1, ai ∈ Z

posess the property of unique factorization into irreducible elements.

***

Theorem (Kummer, 1844). If ζ 6= 1, ζ23 = 1 then 1 − ζ + ζ21 ∈ Z[ζ23] is
an irreducible element, which is not prime.

Theorem (Masley, 1976). There are only 29 values of n ∈ N+ such, that

Z[ζ] is a UFD. The smallest n, for which unique factorization fails, is 23.

.



Saving unique factorization

Example (Irreducible, but not prime). Z[
√
−5] is not UFD since:

6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5).
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Example (Irreducible, but not prime). Z[
√
−5] is not UFD since:

6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5).

Kummer’s idea. Extend the set of prime factors to have:

6 = 2 · 3 = 1 +
√
−5 · 1 −

√
−5

= (P1 · P2) · (P3 · P4) = (P1 · P3) · (P2 · P4),

where P1, P2, P3, P4 are ideal prime factors.

HOW TO CONSTRUCT THESE ’IDEAL FACTORS’?

.
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√
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Ideal factors

Kummer’s ideal factors [1846]. We expect that:

P |0,

P |x, P |y ⇒ P |x ± y,

P |x ⇒ P |xy, for all y ∈ Z[
√
−5].

The additional property of prime ideal factor should be:

P |xy ⇒ P |x or P |y.

Theorem (Kummer, 1846). If two cyclotomic integers g(ζ) and h(ζ) are
divisible by exactly the same prime ideal divisors with exactly the same
multiplicities, then they differ only by a unit multiple.

.



Ideal factors

Dedekind’s ideals [1871]. A subset P of the considered ring R, that satisfies:

0 ∈ P,

x ∈ P, y ∈ P ⇒ x ± y ∈ P,

x ∈ P ⇒ xy ∈ P, for all y ∈ R.
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xy ∈ P ⇒ x ∈ P or y ∈ P.

.



Ideal factors

Dedekind’s ideals [1871]. A subset P of the considered ring R, that satisfies:

0 ∈ P,

x ∈ P, y ∈ P ⇒ x ± y ∈ P,

x ∈ P ⇒ xy ∈ P, for all y ∈ R.

The additional property of prime ideal is:

xy ∈ P ⇒ x ∈ P or y ∈ P.

Remark. Dedekind proved the generalization of Kummer’s theorem on unique
factorization for a wider class of rings, later called Dedekind domains. Noether
proved that it is the only class of rings with that property.

.
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Ideal factors

Kummer’s idea. Extend the set of prime factors to have:

6 = 2 · 3 = 1 +
√
−5 · 1 −

√
−5

= (P1 · P2) · (P3 · P4) = (P1 · P3) · (P2 · P4).

Dedekind’s idea. Exchange numbers for ideals. Then:

(6) = (2) · (3) = (1 +
√
−5) · (1 −

√
−5)

= (P1 · P2) · (P3 · P4) = (P1 · P3) · (P2 · P4).

where:

P1 = (2, 1 +
√
−5), P2 = (2, 1 −

√
−5),

P3 = (3, 1 +
√
−5), P4 = (3, 1 −

√
−5).

.



This is not enough...

Lamé’s idea [The meeting of the Paris Academy, 1847]. We have to
decompose xn + yn completely into n linear factors – if ζn = 1, ζ 6= 1,
n – odd then:

xn + yn = (x + y) (x + ζy)
(

x + ζ2y
)

· · ·
(

x + ζn−1y
)

= zn.

Even if we exchange numbers for ideals:

(x + y) (x + ζy)
(

x + ζ2y
)

· · ·
(

x + ζn−1y
)

= (z)n,

and even if they are relatively prime, all we get from the unique factorization is:

(x + ζky) = Jn
k ,

for some Jk - ideals of Z[ζn].

.



Equivalent ideals

Definition (Ideal class). Let R by any integral domain. We say that two
nontrivial ideals A, B of R are in the same ideal class (which we denote as
A ∼ B) if and only if there exist principal ideals I, J such that AI = BJ .
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Equivalent ideals

Definition (Ideal class). Let R by any integral domain. We say that two
nontrivial ideals A, B of R are in the same ideal class (which we denote as
A ∼ B) if and only if there exist principal ideals I, J such that AI = BJ .

Ideal classes can be multiplied:

1. The multiplication [A][B] = [AB] is well defined and commutative.

2. The principal ideals form the ideal class, which serves as an identity
element for this multiplication.

Remark. In every Dedekind domain R, if A is a nontrivial ideal, then there
exists an ideal B such that AB is principal.

Collorary. For every Dedekind domain R, the set of its ideal classes forms an
abelian group called: ideal class group. If it is finite (not truth in general), its
order is called class number.

.



Half-factorial domains

Observation. The order of the ideal class group tells us how much
’non – UFD’ can a particular Dedekind domain be.
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Half-factorial domains

Observation. The order of the ideal class group tells us how much
’non – UFD’ can a particular Dedekind domain be.

Unique factorization domain. Let R be a Dedekind domain. We say that R is
an UFD if and only if a1a2 . . . an = b1b2 . . . bm, ai, bj - irreducibles, implies
that:

1. n = m,

2. There exists σ ∈ Sn such that ai, bσ(i) are associates.

Half-factorial domain. A Dedekind domain R that satisfies only (1).

Theorem (Carlitz, 1960). Let R be a Dedekind domain. Then R has class
number less or equal to 2 if and only if R is HFD.

.



The class number of cyclotomic integers

Theorem (Masley, 1976). Let m be an integer greater than 2, m 6= 2 mod 4.
Then all the values of m, for which the cyclotomic integers Z[ζm] have class
number hm with 2 ≤ hm ≤ 10 are listed in the table:

hm 2 3 4 5 6 7 8 9 10

m 39 23 120 51 none 63 29 31 55

56 52 80 68 57

72 96

Furthermore, all the other values of m with φ(m) = [Q[ζm] : Q] ≤ 24 give
the twenty-nine values of m for which hm = 1 :

3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25,

27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.

.
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FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not
divide the class number of Z[ζp].

Announcement (Kummer, 1847). FLT holds for regular primes.

The key idea. If we restrict ourselves to the ’first case’ of FLT, we can prove

that x + ζky are relatively prime for 0 ≤ k ≤ p − 1. Thus, in terms of ideals
we have:

(x + y) (x + ζy)
(

x + ζ2y
)

· · ·
(

x + ζp−1y
)

= (z)p.

From the unique factorization we can deduce that:
(

x + ζky
)

= J
p
k .

In the class group:
[(

x + ζky
)]

= [Jk]
p.

The order of [Jk] divides |Cl(Z[ζp])|. But it cannot, since p is regular!

Thus Jk are principal.
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FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not
divide the class number of Z[ζp].

Announcement (Kummer, 1847). FLT holds for regular primes.

The key idea. If we restrict ourselves to the ’first case’ of FLT, we can prove
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(

x + ζ2y
)

· · ·
(

x + ζp−1y
)

= (z)p.

For some αk ∈ Z[ζp] and invertible uk ∈ Z[ζp]
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FLT for regular primes

Definition (Regular prime). An odd prime p is called regular if p does not
divide the class number of Z[ζp].

Announcement (Kummer, 1847). FLT holds for regular primes.

The key idea. If we restrict ourselves to the ’first case’ of FLT, we can prove

that x + ζky are relatively prime for 0 ≤ k ≤ p − 1. Thus, in terms of ideals
we have:

(x + y) (x + ζy)
(

x + ζ2y
)

· · ·
(

x + ζp−1y
)

= (z)p.

For some αk ∈ Z[ζp] and invertible uk ∈ Z[ζp]
∗ we have:

x + ζky = ukα
p
k.

...........................
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Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide
the numerator of any of the Bernoulli numbers Bk for k = 2, 4, . . . , p − 3.

.



Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide
the numerator of any of the Bernoulli numbers Bk for k = 2, 4, . . . , p − 3.

Bernoulli numbers. A sequence Bn of signed rational numbers that can be
defined by the identity:

x

ex − 1
=

∞
∑

n=0

Bnxn

n!
.

.



Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide
the numerator of any of the Bernoulli numbers Bk for k = 2, 4, . . . , p − 3.

Bernoulli numbers. A sequence Bn of signed rational numbers that can be
defined by the identity:

x

ex − 1
=

∞
∑

n=0

Bnxn

n!
.

They can be also defined recursively by setting B0 = 1, and then using:

(

k + 1

1

)

Bk +

(

k + 1

2

)

Bk−1 + . . . +

(

k + 1

k

)

B1 + B0 = 0.

.



Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide
the numerator of any of the Bernoulli numbers Bk for k = 2, 4, . . . , p − 3.

Hypothesis. There are only finitely many irregular primes. Up to year 1871
Kummer had found only 8 of them:

37, 59, 67, 101, 103, 131, 149, 157.

.
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Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide
the numerator of any of the Bernoulli numbers Bk for k = 2, 4, . . . , p − 3.

Theorem (Jensen, 1915). There are infinitely many irregular primes.

Open question. Are there infinitely many regular primes? Are they exactly

e−
1

2 of all primes?

Definition (Irregularity index). A prime p has irregularity index s if p divides
exactly s numerators of Bernoulli numbers Bk for k = 2, 4, . . . p − 3.

Conjecture (Johnson, Wooldridge, 1975). As p → ∞, the probability that p
has index of irregularity r goes to:

(

1

2

)r
e−

1

2

r!
.

.



Euler regular primes

Definition (E - regular number, 1940). A prime p is E – regular if it divides one
of Euler numbers E2n with 0 < 2n < p − 1.
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Euler regular primes

Definition (E - regular number, 1940). A prime p is E – regular if it divides one
of Euler numbers E2n with 0 < 2n < p − 1.

Definition (Euler numbers). A sequence En of signed integral numbers that
can be defined by the identity:

1

cosh(x)
=

∞
∑

n=0

(−1)n · Enx2n

2n!
, |x| <

π

2
.

Theorem (Vandiver, 1940). The first case of FLT holds for E – regular primes.

Theorem (Carlitz, 1954). There are infinitely many E – irregular primes.

Conjecture. The E - irregular primes of index r satisfy a Poisson distribution.

.



Fermat’s Hypothesis...

Theorem. The Diophantine equation:

xn + yn = zn,

where x, y, z, n are nonzero integers, has no nonzero solutions for n > 2.

***

I have discovered a truly marvellous proof of this,
which this margin is too narrow to contain.

Pierre de Fermat – around 350 years before...

***

Proof [Wiles, 1995] . Every semistable elliptic curve over Q is modular.

.



THE END

Thank you for your attention!

Arkadiusz Męcel

University of Warsaw

am234204@students.mimuw.edu.pl

http://students.mimuw.edu.pl/ ˜am234204/
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