On Hecke-Kiselman algebras

Arkadiusz Męcel

a joint work with Jan Okniński

University of Warsaw

a.mecel@mimuw.edu.pl

NonCommutative rings and their Applications Lens, 24-27 June 2019

Definition (Ganyushkin, Mazorchuk, 2011)

For any simple graph Θ of vertices $\{1, \ldots, n\}$ the monoid HK_{Θ} generated by a_1, \ldots, a_n is defined by the following relations:

•
$$a_i^2 = a_i$$
, for all $i = 1, ..., n$,

• $a_i a_j = a_j a_i$, when *i*, *j* are not connected in Θ ,

•
$$a_i a_j a_i = a_j a_i a_j$$
, when $i - j$ in Θ ,

• $a_i a_j a_i = a_j a_i a_j = a_i a_j$, when $i \rightarrow j$ in Θ ,

The oriented graphs case

Consider an unoriented chain Θ of n-1 vertices

HK_{Θ} is the Coxeter monoid of the symmetric group *S_n*. It is generated by *s_i*, 1 ≤ *i* ≤ *n* − 1 such that:

$$s_i^2 = s_i,$$
 for all $1 \le i \le n - 1,$
 $s_i s_j = s_j s_i,$ if $|i - j| > 1,$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}.$

An important fact (non-trivial!): $|S_n| = |HK_{\Theta}|$.

Remainder

Let Θ be an unoriented graph with *n* vertices, K - a field, $q \in K$. The **Iwahori-Hecke algebra** is generated by S_1, \ldots, S_n with:

$$S_i^2 = q + (q-1)S_i, \quad \underbrace{S_iS_jS_i\dots}_{m_{ij}} = \underbrace{S_jS_iS_j\dots}_{m_{ij}}$$

where m_{ij} – 2 denotes the number of arrows between *i* and *j*.

- For q = 1 this is just the group algebra K[W] of a Coxeter group W_Θ, constructed from the graph Θ,
- for q = 0 this is a semigroup algebra of HK_{Θ} , if Θ is simple.

The oriented graphs case: the chain

Consider an oriented chain Θ of n-1 vertices.

 HK_{Θ} is **the Catalan monoid** C_n of the order-preserving, weakly-increasing self maps of $\{1, \ldots, n\}$ represented by monotonic lattice paths along the edges of a grid with $n \times n$ square cells, which do not pass above the diagonal. For n=4:

Open problems:

- The word problem.
- For which ⊖ is HK_⊖ finite?
- Is there a faithful representation of HK_{Θ} in $M_{n \times n}(\mathbb{N})$?
- The ideal structure in the monoids. Are they \mathcal{J} -trivial?

The finiteness problem for HK_☉

- Tsaranov (1990). When ⊖ is unoriented, then HK_⊖ is finite if and only if ⊖ is a disjoint union of Dynkin diagrams.
- Aragona, D'Andrea (2012) When ⊖ is oriented, then HK_⊖ is finite if and only if ⊖ is acyclic.
- Theorem (Aragona, D'Andrea 2012). Let Θ be acyclic mixed graph. If |V(Θ)| = 3 then HK_Θ is finite. If V(Θ)| = 4 then HK_Θ is finite, except for the case when Θ is of form:

Open problems:

- Is the Gröbner basis finite? Is K[HK_Θ] automaton?
- What is the Gelfand-Kirillov dimension of K[HK_Θ]?
- Is there a faithful representation of $K[HK_{\Theta}]$ in $M_{n \times n}(\mathbb{K})$?
- The ideal structure in the algebra. Is it a cellular algebra?

The word problem.

Let S be a finitely generated semigroup $\langle X \rangle / I$. Let $v, w \in \langle X \rangle$. Find an algorithm to decide if v = w in S.

- In general this is impossible (Tsejtin, 1958).
- Do we reduce only with the defining relations? No!
- Problem: reduce to obtain smaller deg-lex words.
- How many reductions do we need to add? Finitely many?
- What if we change the presentation and the monomial order? Can the problem become decidable?

Let $\pi : K\langle X \rangle \longrightarrow K\langle X \rangle / I$ be a natural map of finitely generated semigroup algebras. Let \langle be a monomial order on $\langle X \rangle$.

- an element w ∈ ⟨X⟩ is normal,
 if w is not a leading term in ker(π),
- a set *G* is a **Gröbner basis** of *I*, if no normal word has a factor being a leading term in *G*.

If *T* is a set of reductions of form (w, w') where w > w' on $\langle X \rangle$, then *w* is *T*-reduced if no reduction from *T* can be applied.

How to choose *T* such that *T*-reduced words \equiv normal words? When is $\{w - w' |, (w, w') \in T\}$ a Gröbner basis?

Use: Bergman's Diamond Lemma.

Theorem (Okniński, M. (2018))

Let Θ be a finite simple oriented graph with the vertex set $V(\Theta)$. Consider a deg-lex order on the free monoid $F = \langle V(\Theta) \rangle$.

Consider the following set T of reductions on the algebra k[F]:

(i) (twt, tw), for any $t \in V(\Theta)$ and $w \in F$ such that $w \not\rightarrow t$,

(ii) (*twt*, *wt*), for any $t \in V(\Theta)$ and $w \in F$ such that $t \nleftrightarrow w$,

(iii) $(t_1 w t_2, t_2 t_1 w)$, for any $t_1, t_2 \in V(\Theta)$ and $w \in F$ such that $t_1 > t_2$ and $t_2 \nleftrightarrow t_1 w$.

Then the set T(F) of T-reduced words and the set of normal words of $K[HK_{\Theta}]$ are equal. Moreover, as linear spaces:

 $\mathsf{K}[F] = \mathsf{K}[I] \oplus \mathsf{lin}_{\mathsf{K}}(T(F)).$

- If we choose a "better presentation" and a "better order", perhaps a finite Gröbner basis can be obtained?
- If ⊖ is simple oriented, then the set of normal words of HK_⊖ forms a regular language: it is obtained from a finite subset of *F* by applying a finite sequence of operations of union, multiplication and operation * defined by

$$T^* = \bigcup_{i \ge 1} T^i$$
, for $T \subseteq F$.

• Corollary: The Hecke-Kiselman algebra is automaton!

Theorem (M. Okniński, 2017)

Assume that Θ is a finite oriented simple graph. The following conditions are equivalent.

 The graph ⊖ does not contain two different cycles connected by an oriented path of length ≥ 0, for instance

(2) the monoid algebra K[HK_Θ] satisfies a polynomial identity,
(3) GKdim(K[HK_Θ]) < ∞,

(4) HK_{Θ} does not contain a free submonoid of rank 2.

Theorem (Okniński, M., 2018)

Consider an oriented cycle Θ_n with *n* vertices, where $n \ge 4$:

Then:

- the Gröbner basis of HK_{Θ_n} is finite,
- $GKdim(K[HK_{\Theta_n}]) = 1$,

Open problem: Is $K[HK_{\Theta_n}]$ semiprimitive? Is it semiprime?

Theorem (Okniński, Wiertel, 2018)

Assume that Θ is a finite oriented simple graph. The following conditions are equivalent.

- (1) $K[HK_{\Theta}]$ is right Noetherian,
- (2) $K[HK_{\Theta}]$ is left Noetherian,
- (3) each of the connected components of ⊖ is either an oriented cycle or an acyclic graph.

- Ganyushkin O., Mazorchuk V.: On Kiselman quotients of 0-Hecke Monoids. Int. Electron. J. Algebra 10 (2) (2011), 174-191.
- (2) A. Męcel, J. Okniński: *Growth alternative for Hecke-Kiselman monoids*, Publicacions Matematiques 63 (2019), 219-240.
- (3) A. Męcel, J. Okniński: Gröbner basis and the automaton property of Hecke-Kiselman algebras, to appear in Semigroup Forum (2019).
- (4) J. Okniński, M. Wiertel: Combinatorics and structure of Hecke-Kiselman algebras, preprint, arXiv: 1904.12202.