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This talk concerns a certain class of algebraic non-commutative objects, called Hecke-Kiselman

algebras, that are being under research in the Algebra Group at the University of Warsaw.

On a very elementary level, non-commutative problems arise simply because the composition

operation of two functions is surprisingly often not commutative (even if it can be done both

ways). If those functions concern discrete objects as finite sets, graphs, posets, we tend to

disguise them in two fundamental ways - as matrices or as words. In the first case an alge-

braist will often say that there is a matrix representation, or a linear representation of some

class of objects, and in the second case we talk about the presentation for a class of objects.

If there is an algebraic action involved, then a corresponding operation should appear in the

representation or in the presentation of those objects. It would also be very nice if different

objects were represented differently. This is what we look after.

The most elementary example that will lead us into Hecke-Kiselman monoid is the symmetric

group, the set of bijective self-maps of {1, . . . , n}. You all know that these permutations can

be represented as 0-1 matrices of size n×n with exactly one non-zero element in each row and

column. The matrix multiplication corresponds to the permutation composition. Of course,

there is a question if you could somehow use smaller matrices, maybe with different entries,

like complex numbers, or other fields. What would be the sizes of these matrices? What

would those sizes mean? These are representation theory questions. From a combinatorial

point of view you can argue differently. You introduce the set of elementary transpositions

s1, . . . , sn−1, where si swaps i and i+ 1 and everything else stays the same. Now its easy to

prove that every permutation is a finite composition of such transpositions. We can represent

such function as a word, for instance s2s3sn−1s1. When two words of this kind meet, there’s

a set of rules to multiply them. Here are those rules.

(i) s2i = 1, where 1 ¬ i ¬ n,

(ii) sisj = sjsi, if |i− j| > 1,

(iii) sisjsi = sjsisj , if |i− j| = 1.

This choice of generators s1, . . . , sn−1 and the relations above is called the presentation of the

symmetric group. This is the second approach. Represent an algebraic objects a words and

relations. This approach is very tricky. First, we need to know that one group can disguise

itself in many different presentations. It is often almost impossible to say if two presentations

define the same group or not. Moreover, while having a set presentation of an algebraic object

we can have two words and no idea how to relate them to each other. Are they equal? This is

a famous word problem. In the 60’ it was solved by Tits not only in the case of permutation

groups, but also in the case of the so-called Coxeter groups, and more general - in a context of

groups with BN-pairs. For solving this problem we will use the terminology of normal words

and Gröbner bases. Having said all of this I will now introduce the Hecke-Kiselman monoid.
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1 Hecke-Kiselman monoids

Consider a finite graph Θ with n vertices {1, . . . , n}. We assume that these vertices can be

connected by unoriented edges and also by oriented arrows, but for each pair of vertices there

is at most one edge or arrow that connects them. This is called a finite simple digraph. For

such graph Θ we define a monoid HKΘ generated by n elements x1, . . . , xn that are related

by the following conditions.

(i) x2i = xi, where 1 ¬ i ¬ n,

(ii) if the vertices i, j are not connected in Θ, then xixj = xjxi,

(iii) if i, j are connected by an arrow i→ j in Θ, then xixjxi = xjxixj = xixj ,

(iv) if i, j are connected by an (unoriented) edge in Θ, then xixjxi = xjxixj .

This presentation yields the Hecke-Kiselman monoid HKΘ of a graph Θ. So we define the

set words and some composition rules. Here there is an additional underlying structure of a

graph. For some of us this should come as no surprise. When we talked about the symmetric

group, there was also a graph involved. If we actually assumed Θ to be an unoriented chain

of n− 1 vertices and if we generated a group of n− 1 generators that satisfy (ii), (iv), along

with a modified relation (i) of form x2i = 1, then we would obtain exactly a presentation

of the symmetric group Sn. This is no coincidence, as for every simple unoriented graph Θ

of vertices {1, 2, . . . , n} there exists a corresponding finitely generated Coxeter group WΘ of

presentation:

(1)x2i = 1, (2) (xixj)
2 = 1, (3) (xixj)

3 = 1,

where the condition (1) is satisfied by all generators, (2) is satisfied by those generators which

correspond to non-connected vertices Θ and (3) is satisfied for generators corresponding to

connected vertices i− j. It is obvious, that via group manipulations of equalities (1)-(3) one

can obtain a presentation that resembles that of a Hecke-Kiselman monoid in a way descri-

bed above. These are called simply laced Coxeter groups, as such groups can be formed also

for graphs with multiple connections between vertices of an unoriented graph. These groups

describe symmetries in the real space and appear in many other algebraic settings.

To make the resemblance between the Coxeter groupWΘ and a Hecke-Kiselman monoid HKΘ
clear we should mention that the latter in the unoriented case is called a 0-Hecke monoid,

or a Coxeter monoid. This name comes from the representation theory, and originates from

the modular representation theory of Coxeter groups, in particular a symmetric group. In

essence, this is a specialization of the so called Hecke-Iwahori algebra H0(WΘ, v), a unital

algebra generated by generators Ti such that are related by braid relations (they correspond to

the ones forWΘ) and the relation of kind (i) is modified to the form (Ti−q)(Ti+1) = 0, where

q is an indeterminate. Roughly speaking, when q = 1 this is just a group algebra of a Coxeter

group, and when q = 0 this is exactly a semigroup algebra of our Hecke-Kiselman monoid.

The last important bit of information is that the dimension of the Iwahori-Hecke algebra is

the same as the number of elements in the Coxeter group, no matter the specialization of

indeterminate q. Therefore, it can be proved, that there is a bijection between the Coxeter

group, and the associated Coxeter monoid. It is a very strong one as the reduced forms

of words in these two objects are completely the same. This yields, for instance, that the

finiteness problem for Hecke-Kiselman monoids in the unoriented case is in fact equivalent
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to the finiteness problem for Coxeter groups, and it is thus solved years ago. The graph, for

which this monoid is finite are exactly the simply laced Dynkin diagrams.

The notion of HKΘ was introduced by Ganyushkin and Mazorchuk in 2011 as an attempt

to generalize a class of Kiselman monoids and their quotients, which corresponds to the case

when the graph Θ is oriented. I will not go into too many details, but I would to show you

two examples of Hecke-Kiselman monoids in the oriented case.

Consider an oriented chain in n − 1 vertices of form 1 → 2 → . . . → n − 1. The Hecke-

Kiselman semigroup that arises is finite and it is the so-called Catalan Cn monoid of all

order-preserving, weakly increasing self-maps f of {1, . . . , n}. It is well known that the cardi-

nality of Cn is the n-th Catalan number. This is a very interesting combinatorial object, but i

wonder if it really easy to see the connection between the presentation and the combinatorial

object? Of course not, and this is very typical.

It is, by no means completely trivial to say when in the oriented Θ case, is such semigroup

HKΘ finite. Even if we take an oriented cycle Xn of n-elements, which can be called an affine

Catalan monoid, it does not seem immediately obvious from the defining relations how to

prove that it is infinite. If this cycle is of form x1 → x2 → . . . → xn → x1 then an obvious

candidate for an infinite-order element is x1 . . . xn, but it is not easy to prove this. If you can,

tell me. I know two methods, one very tricky and one very tedious. This is what we try to

accomplish here - the questions on the finiteness, the uniqueness of word presentations, and

ultimately - on the internal structure of such monoids, their ideals, radicals of their algebras

and so on.

2 Gröbner bases

The questions on presentation, the word problems for instances, can be attacked via the

method of Gröbner bases. To use it, we will expand our Hecke-Kiselman structure, from the

monoid structure, to the structure of an semigroup algebra. To put it very briefly - instead

of considering the HKΘ monoid whose elements are represented (perhaps not uniquely) by

words from the alphabet x1, . . . , xn, we consider the linear span of those words - the non-

commutative polynomials in x1, . . . , xn. They can be added the same way polynomials are

always added, but you multiply using the presentation rules for multiplying monomials that

3



represent elements of the Hecke-Kiselman monoids.

The use of Gröbner bases is a standard method of checking if a certain polynomial belongs

to an ideal generated by a finite numbers of polynomials. The method is to transform the

polynomial generators to a set of „nicer generators” by introducing some kind of ordering on

the monomials and by some kind of division algorithm. As a result: if the leading elements

of a probed polynomial divides a leading polynomial of those ”nice generators” this means

that our candidate indeed belongs to the ideal.

You have been doing this since you first lean the Gauss algorithm of row reducing the matrix

of a set of linear equations. For example if f1 = x1+x2−1 and f2 = x1−x2+2, then Gaussian

elimination uses term x1 in f1 as a pivot, and replaces f2 with f2 := f2− f1 = −2x2+3, and

back substitution uses the term −2x2 in the new f2 as a pivot to remove the x2 term form

f1. One can obtain the original polynomials as linear combinations of x1 +
1

2
and −2x2 + 3.

The similar thing happens when you consider f1 = x
3 − x2 − 2x, f2 = x

2 − 3x+ 2. The Euc-

lidean algorithm attempts to uncover new lead terms by canceling lead terms. We quickly

realize that the ideal generated by f1 and f2 is in fact the ideal generated by f = x − 2.

So the system f1 = f2 = 0 has a unique solution. If we stay in the commutative case, but

go from the one variable-case to the mutltivariable case, we get another algorithm called the

Buchberger algorithm, which again uses some kind of ordering on the monomials and the

reductions process. In the examples above we had two orders on monomials: x2 > x1 > 1 and

x3 > x2 > x > 1. This generalizes further. In the commutative setting similar procedures end

in finitely many steps and computers can be used. In the non-commutative settings things do

not work that smooth as the procedure for obtaining the so-called Gröbner basis of an ideal

may not terminate after finitely many steps. But if we obtain a basis somehow (finite or not),

there is a way to retrieve a particularly elegant basis of a quotient algebra. The method of ob-

taining such basis requires the use of the so-called diamond lemma. Let us recall some details.

Let F denote the free monoid on the set X of n  3 free generators x1, . . . , xn. Let k be a

field and let k[F ] = k〈x1, . . . , xn〉 denote the corresponding free algebra over k. Assume that

a well order < is fixed on X and consider the induced degree-lexicographical order on F (also

denoted by <). Let A be a finitely generated algebra over k with a set of generators r1, . . . , rn
and let π : k[F ] → A be the natural homomorphism of k-algebras with π(xi) = ri. We will

assume that ker(π) is spanned by elements of the form w−v, where w, v ∈ F (in other words,

A is a semigroup algebra). Let I be the ideal of F consisting of all leading monomials of

ker(π). The set of normal words corresponding to the chosen presentation for A and to the

chosen order on F is defined by N(A) = F \ I.

A subset G of an ideal J = ker(π) is called a Gröbner basis of J (or of A = k[F ]/J) if 0 /∈ G,

J is generated by G as an ideal and for every nonzero f ∈ J there exists g ∈ G such that the

leading monomial g ∈ F of g is a factor of the leading monomial f of f . A word w ∈ F is

normal if and only if w has no factors that are leading monomials in g ∈ G.

The so-called diamond lemma, or as others say: a composition-lemma is often used in this

context. By a reduction in k[F ] determined by a pair (w,w′) ∈ F 2, where w′ < w (the deg-lex

order of F ), we mean any operation of replacing a factor w in a word f ∈ F by the factor

w′. For a set T ⊆ F 2 of such pairs (these pairs will be called reductions as well) we say that

4



the word f ∈ F is T -reduced if no factor of f is the leading term w of a reduction (w,w′)

from the set T . The deg-lex order on F satisfies the descending chain condition, which means

there is no infinite decreasing chain of elements in F . This means that a T -reduced form of

a word w ∈ F can always be obtained in a finite series of steps. The linear space spanned by

T -reduced monomials in k[F ] is denoted by R(T ).

The diamond lemma gives necessary and sufficient conditions for the set N(A) of normal

words to coincide with the set of T -reduced words in F . The key tool is the notion of ambiguity.

Let σ = (wσ, vσ), τ = (wτ , vτ ) be reductions in T . By an overlap ambiguity we mean a

quintuple (σ, τ, l, w, r), where 1 6= l, w, r ∈ F are such that wσ = wr and wτ = lw. A

quintuple (σ, τ, l, w, r) is called an inclusive ambiguity if wσ = w and wτ = lwr. For brevity

we will denote these ambiguities as l(wr) = (lw)r and l(w)r = (lwr), respectively. We will

also say that they are of type σ-τ . We say that the overlap (inclusive, respectively) ambiguity

is resolvable if vτr and lvσ (vτ and lvσr, respectively) have equal T -reduced forms. Recall the

following simplified version of Bergman’s diamond lemma.

Lemma 1. Let T be a reduction set in the free algebra k[F ] over a field k, with a fixed deg-lex

order in the free monoid F over X. Then the following conditions are equivalent:

• all ambiguities on T are resolvable,

• each monomial f ∈ F can be uniquely T -reduced,

• if I(T ) denotes the ideal of k[F ] generated by {w − v : (w, v) ∈ T} then k[F ] = I(T )⊕

R(T ) as vector spaces.

Moreover if the conditions above are satisfied then the k-algebra A = k[F ]/I(T ) can be iden-

tified with R(T ) equipped with a k-algebra structure with f · g defined as the T -reduced form

of fg, for f, g ∈ R(T ). In this case, {w − v : (w, v) ∈ T} is a Gröbner basis of A.

3 Some results and open questions

The use of diamond-lemma involves somehow-guessing the appropriate reduction set for an

algebra, even if it can be derived algorithmically (indeed, we use some packages of GAP to do

certain computations) This was successful in the case of Hecke-Kiselman algebras of oriented

graphs, as we were able to prove:

Theorem 2 (Okniński, M. (2018)). Let Θ be a finite simple oriented graph with vertices

V (Θ) = {x1, x2, . . . , xn}. Extend the natural ordering x1 < x2 < · · · < xn on the set V (Θ) to

the deg-lex order on the free monoid F = 〈V (Θ)〉. Consider the following set T of reductions

on the algebra k[F ]:

(i) (twt, tw), for any t ∈ V (Θ) and w ∈ F such that w 9 t,

(ii) (twt, wt), for any t ∈ V (Θ) and w ∈ F such that t9 w,

(iii) (t1wt2, t2t1w), for any t1, t2 ∈ V (Θ) and w ∈ F such that t1 > t2 and t2 = t1w.

where for t ∈ V (Θ) and w ∈ F = 〈V (Θ)〉 we write w 9 t if t /∈ supp(w) and there are

no x ∈ supp(w) such that x → t in Θ. Similarly, we define t 9 w: again we assume that

t /∈ supp(w) and there is no arrow t → y, where y ∈ supp(w). Moreover, when t 9 w and

w 9 t, we write t = w. Then the set {w − v, where (w, v) ∈ T} forms a Gröbner basis of

the algebra k[HKΘ].
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In other words, if a word in F does not contain a factor (a block of letters) of form twt, as

in (i) or (ii) or of form t1wt2, then it is reduced. And all elements of HKΘ can be obtained

in that way, as T -reduced elements.

This result, allows a number of corollaries, some of which were obtained in the earlier works.

Here are some of them:

Theorem 3 (Okninski, M. (2017)). Assume that Θ is a finite oriented simple graph. The

following conditions are equivalent.

(1) Θ does not contain two different cycles connected by an oriented path of length  0,

(2) AΘ is a PI-algebra,

(3) GKdim(AΘ) <∞,

(4) the monoid HKΘ does not contain a free submonoid of rank 2.

Theorem 4 (Okninski, Wiertel (2018)). Assume that Θ is a finite oriented simple graph.

The following conditions are equivalent.

(1) AΘ is right Noetherian,

(2) AΘ is left Noetherian,

(3) each of the connected components of Θ is either an oriented cycle or an acyclic graph.

Corollary 5. The Hecke-Kiselman algebra of an oriented cycle embedds into the matrix

algebra over a field.

These results involved a careful considerations on the oriented cycle graph monoid HKXn ,

mentioned before. Its semigroup algebra has a lot of interesting properties. It can be proved

that its growth is linear, that is, its Gelfand-Kirillov dimension is 1. Moreover, its Gröbner

basis is finite, which is a non-trivial corollary from the description of the Gröbner basis in the

general oriented case. With great computational effort of Okniński and Wiertel it was proved,

that the cycle monoid allows a chain of ideals whose factors are co-finite with the generalized

semigroups of matrix types, known in the classical theory of representations of semigroups.

There is no place to comment on how are the ideals of the Hecke-Kilesman algebras studied,

but some methods require representation ideas, as the one used before in the proof of the

finiteness of the acyclic graph monoid, some require the use of graph automorphisms that

yield some word-invariant operations in the monoid.

Another result that followed from those main theorem concerned the automaton property of

Hecke-Kiselman monoids - an especially elegant property for a finitely generated algebra.

Theorem 6 (Okninski, M. (2018)). Assume that Θ is a finite oriented simple graph. Then

the algebra AΘ is automaton, that is: the set N(A) of normal words of A is obtained from

a finite subset of F by applying a finite sequence of operations of union, multiplication and

operation ∗ defined by T ∗ =
⋃
i1 T

i, for T ⊆ F .

In other words, and this is famous Kleene theorem, the set of normal words of A is determined

by a finite deterministic automaton.
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The class of automaton algebras was introduced by Ufnarovskii in the late 80’. The main

motivation was to study a class of finitely generated algebras that generalizes the class of

algebras that admit a finite Gröbner basis with respect to some choice of generators and

an ordering on monomials. The difficulty here lies in the fact that there are infinitely many

generating sets as well as infinitely many admissible orderings on monomials to deal with.

There are examples of algebras with finite Gröbner bases with respect to one ordering, and

infinite bases with respect to the other. Up until recently it was not known whether for any

of known examples of automaton algebras with infinite Gröbner bases with respect to certa-

in orderings one could find a better ordering that would yield a finite Gröbner basis. First

counterexamples were found by Iyudu and Shkarin.

There are many results indicating that the class of automaton algebras not only has bet-

ter computational properties but also several structural properties that are better than in

the class of arbitrary finitely generated algebras. In our setting there are many examples of

algebras with infinite Gröbner basis. Attach even one outgoing arrow to a cycle, and you

will obtain an algebra of Gelfand-Kirillov dimension 2, with an infinite Gröbner basis. As

there are still many open question on the structure of Hecke-Kiselman algebras, even the

ones obtained from the oriented cycle, for instance: what are the prime algebras, semiprime,

semiprimitive, are the Hecke-Kiselman algebras cellular?

There is also a context of mixed graphs Θ and the corresponding Hecke-Kiselman algebras.

Here all the questions raised in the beginning are still unanswered. Especially in the mixed

graphs case, the problem of finiteness seems to be almost impossible to approach.

* * *

Many thanks to Adam Adams and Joachim Jelisiejew for making this talk possible.
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