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This talk concerns a certain class of semigroup algebras that are being under research in the

Algebra Group at the University of Warsaw for more than two years now by Jan Oknińki,

Łukasz Kubat (before leaving), Magdalena Wiertel and myself. First, I will introduce those

monoids and give some background, as their definition covers a number of well known objects

and there are natural yet non-trivial questions to be considered. Then I will talk about

the problem of determining the Gröbner basis of the semigroup algebras of Hecke-Kiselman

monoids, a procedure allowing us to work in the combinatorial setting of the language of

normal words, reduced polynomials and automata. Lastly, I will recall some results that were

obtained on these algebras and state some question that are yet to be answered.

1 Hecke-Kiselman monoids

Consider a finite graph Θ with n vertices {1, . . . , n}. We assume that these vertices can be

connected by unoriented edges and also by oriented arrows, but for each pair of vertices there

is at most one edge or arrow that connects them. This is called a finite simple digraph. For

such graph Θ we define a monoid HKΘ generated by n elements x1, . . . , xn that are related

by the following conditions.

(i) x2i = xi, where 1 ¬ i ¬ n,

(ii) if the vertices i, j are not connected in Θ, then xixj = xjxi,

(iii) if i, j are connected by an arrow i→ j in Θ, then xixjxi = xjxixj = xixj ,

(iv) if i, j are connected by an (unoriented) edge in Θ, then xixjxi = xjxixj .

This presentation yields the Hecke-Kiselman monoid HKΘ of a graph Θ. The monoid algebra

of k[HKΘ] will be denoted as AΘ. The ground field is irrelevant in our considerations.

The notion of HKΘ was introduced by Ganyushkin and Mazorchuk in 2011 as an attempt

to generalize a class of Kiselman monoids and their quotients, which corresponds to the case

when the graph Θ is oriented. I will go into details in a moment. To put it briefly, this new

object was considered with a combinatorial motiviations and approach. One aim of that first

paper was to decide if two non-isomorphic graphs can yield two isomorphic Hecke-Kiselman

monoids, which proved impossible. Certain important examples were also considered. Some

very natural questions were stated, that are still unanswered in full generality:

• For which graphs Θ is HKΘ finite?

• Are there any faithful representations of HKΘ into matrices (preferably over Z)?

• What is the ideal structure of HKΘ, for instance, can two principal two-sided ideals

generated by two different elements can be equal?
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If Θ is an unoriented graph, then the most bizarre-looking relation of type (iii) is omitted,

and we obtain a monoid, whose presentation resembles, in many ways, a presentation of a

symmetric group. If we actually assumed Θ to be a chain of n−1 vertices and if we generated

a group of n − 1 generators that satisfy (ii), (iv), along with a modified relation (i) of form

x2i = 1, then we would obtain exactly a presentation of the symmetric group Sn. This is no

coincidence, as for every simple unoriented graph Θ of vertices {1, 2, . . . , n} there exists a

corresponding finitely generated Coxeter group WΘ of presentation:

(1)x2i = 1, (2) (xixj)
2 = 1, (3) (xixj)

3 = 1,

where the condition (1) is satisfied by all generators, (2) is satisfied by those generators which

correspond to non-connected vertices Θ and (3) is satisfied for generators corresponding to

connected vertices i− j. It is obvious, that via group manipulations of equalities (1)-(3) one

can obtain a presentation that resembles that of a Hecke-Kiselman monoid in a way descri-

bed above. These are called simply laced Coxeter groups, as such groups can be formed also

for graphs with multiple connections between vertices of an unoriented graph. These groups

describe symmetries in the real space and appear in many other algebraic settings.

To make the resemblance between the Coxeter groupWΘ and a Hecke-Kiselman monoid HKΘ
clear we should mention that the latter in the unoriented case is called a 0-Hecke monoid,

or a Coxeter monoid. This name comes from the representation theory, and originates from

the modular representation theory of Coxeter groups, in particular a symmetric group. In

essence, this is a specialization of the so called Hecke-Iwahori algebra H0(WΘ, v), a unital

algebra generated by generators Ti such that are related by braid relations (they correspond to

the ones forWΘ) and the relation of kind (i) is modified to the form (Ti−q)(Ti+1) = 0, where

q is an indeterminate. Roughly speaking, when q = 1 this is just a group algebra of a Coxeter

group, and when q = 0 this is exactly a semigroup algebra of our Hecke-Kiselman monoid.

The last important bit of information is that the dimension of the Iwahori-Hecke algebra is

the same as the number of elements in the Coxeter group, no matter the specialization of

indeterminate q. Therefore, it can be proved, that there is a bijection between the Coxeter

group, and the associated Coxeter monoid. It is a very strong one as the reduced forms

of words in these two objects are completely the same. This yields, for instance, that the

finiteness problem for Hecke-Kiselman monoids in the unoriented case is in fact equivalent

to the finiteness problem for Coxeter groups, and it is thus solved years ago. The graph, for

which this monoid is finite are exactly the simply laced Dynkin diagrams.
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In the oriented case, when we do not allow edges in the graph Θ, one obtains a completely

different object, of a more combinatorial flavour. The name of Kiselman appears here, and

I would assume that it honors Christer Kiselman, a professor emeritus in Uppsala. Kiselman,

a specialist in analysis and convexity theory, wrote a paper in 2002 called ”A semigroup

of operators in convexity theory”, concerning family of convex functions in a real normed

space. He proved that certain family of closure operators called the convex hull, largest lower

semicontinous minorant and the proper function checking operator, represented as three

elements c, l,m and forms a monoid that has a presentation

c2 = c, l2 = l,m2 = m, clc = lcl = lc, cmc = mcm = mc, lml = mlm = ml

so it involves relations (i)-(iii). Later, other authors from Uppsala took this monoid and star-

ted to investigate it in the case of n generators. Mazorchuk, who works in Uppsala since 2001,

was one of them. He found out the graph setting in which he could realize it as a semigro-

up defined in the beginning for a graph Θ of n vertices such that for every i > j there is

an arrow i → j. This way the Kiselman monoid was put into one family with one famous

example of monoid is obtained when we consider an oriented chain in n − 1 vertices and

obtain the so-called Catalan Cn monoid of all order-preserving, weakly increasing self-maps

f of {1, . . . , n + 1}. It is well known that the cardinality of Cn is the n-th Catalan number.

The representation theory of this monoid is very interesting, especially since it is know, that

its semigroup algebra is an incidence algebra of a certain natural poset. Both Kiselman and

Catalan monoids are examples of finite Hecke-Kiselman monoids in the oriented case.

It is, by no means completely trivial to say when in the oriented Θ case, is such semigroup

HKΘ finite. Even if we take an oriented cycle Xn of n-elements, which can be called an affine

Catalan monoid, it does not seem immediately obvious from the defining relations how to

prove that it is infinite. If this cycle is of form x1 → x2 → . . . → xn → x1 then an obvious

candidate for an infinite-order element is x1 . . . xn, but how to prove this. In general, a method

of the Gröbner bases will prove appropriate for this. For over a year, however, we did not

realize that such general method can be applied and proved (in quite a forceful way) a number

of results on the growth and the Gelfand-Kirillov dimension of such algebras. Before I mention

these results and recall the Grobner bases setting, let me give you an example of some other

approaches. I will show you one tricky method that involves some kind of representation

of the oriented cycle monoid. It was used to show that the finite oriented Hecke-Kiselman

monoids are exactly the ones that follow from acyclic graphs.

Remark 1. Let Θ be an oriented simple graph. Then HKΘ is finite if and only if Θ is acyclic.

Proof Denote the oriented cycle of n-elements by Xn. Let M(Z
n) stand for the collection of

all maps f : Zn → Z
n, which is a semigroup under composition. We construct a semigroup

homomorphism

ρ : HKXn →M(Z
n)

and show that the image is infinite. Notice that due to the presentation of HKXn , a map ρ is

given as soon as we choose images ui = ρ(xi), when xi are consecutive elements of the cycle

(see above), that are bound to satisfy some relations. Let ui be defined as follows:

ui(m1, . . . ,mn) = (m1, . . . ,mi−1,mi+1,mi+1, . . . ,mn), for i = 1, . . . , n− 1,

un(m1, . . . ,mn) = (m1, . . . ,mn−1,m1 + 1).
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A straightforward check shows that ui satisfy the defining relations (i)-(iii). However,

(u1 . . . un)(m1, . . . ,mn) = (m1 + 1,m1 + 1, . . . ,m1 + 1).

All powers of u1 . . . un are therefore distinct. So the image of ρ is infinite and hence HKXn too.

We proceed to the actual proof. If Θ contains a cycle Θ′, then there is an obvious monoid

monomorphism HKΘ′ → HKΘ and HKΘ is therefore infinite. The other way around we argue

by an inductive argument on the number of vertices of Θ. If there is only one vertex, the

semigroup HKΘ is clearly finite. Otherwise, since Θ is acyclic there exists a terminal vertex

x in Θ ie. such that there are only incoming or only outcoming arrows that are incicent to

x. Assume the first case. It is easy to show that every word of form xwx, where w is a word

in the free monoid generated by the vertices of Θ, can be reduced, via the relations in HKΘ
to xw. Therefore every element of HKΘ can be represented by a word which allows only one

appearance of x. Thus from the induction hypothesis there are finitely many such words. So

HKΘ is infinite. The second case is resolved instantaneously.

2 Gröbner bases

The use of Gröbner bases is a standard method of checking if a certain polynomial belongs

to an ideal generated by a finite numbers of polynomials. The method is to transform the

polynomial generators to a set of „nicer generators” by introducing some kind of ordering on

the monomials and by some kind of division algorithm. As a result: if the leading elements of

a probed polynomial divides a leading polynomial of those ”nice generators” this means that

our candidate indeed belongs to the ideal. This form of approach is especially fruitful in the

commutative case, as shown by Buchberger in 1965, there is an algorithm of obtaining such

a nice set of generators for an ideal I in commutative polynomials in finitely many variables

in finitely many steps. In the noncommutative settings things do not work that smooth as

the procedure for obtaining the so-called Gröbner basis of an ideal may not terminate after

finitely many steps. But if we obtain a basis somehow (finite or not), there is a way to retrieve

a particularly elegant basis of a quotient algebra. The method of obtaining such basis requires

the use of the so-called diamond lemma. Let us recall some details.

Let F denote the free monoid on the set X of n ­ 3 free generators x1, . . . , xn. Let k be a

field and let k[F ] = k〈x1, . . . , xn〉 denote the corresponding free algebra over k. Assume that

a well order < is fixed on X and consider the induced degree-lexicographical order on F (also

denoted by <). Let A be a finitely generated algebra over k with a set of generators r1, . . . , rn
and let π : k[F ] → A be the natural homomorphism of k-algebras with π(xi) = ri. We will

assume that ker(π) is spanned by elements of the form w−v, where w, v ∈ F (in other words,

A is a semigroup algebra). Let I be the ideal of F consisting of all leading monomials of

ker(π). The set of normal words corresponding to the chosen presentation for A and to the

chosen order on F is defined by N(A) = F \ I.

A subset G of an ideal J = ker(π) is called a Gröbner basis of J (or of A = k[F ]/J) if 0 /∈ G,

J is generated by G as an ideal and for every nonzero f ∈ J there exists g ∈ G such that the

leading monomial g ∈ F of g is a factor of the leading monomial f of f . A word w ∈ F is

normal if and only if w has no factors that are leading monomials in g ∈ G.
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The so-called diamond lemma, or as others say: a composition-lemma is often used in this

context. By a reduction in k[F ] determined by a pair (w,w′) ∈ F 2, where w′ < w (the deg-lex

order of F ), we mean any operation of replacing a factor w in a word f ∈ F by the factor

w′. For a set T ⊆ F 2 of such pairs (these pairs will be called reductions as well) we say that

the word f ∈ F is T -reduced if no factor of f is the leading term w of a reduction (w,w′)

from the set T . The deg-lex order on F satisfies the descending chain condition, which means

there is no infinite decreasing chain of elements in F . This means that a T -reduced form of

a word w ∈ F can always be obtained in a finite series of steps. The linear space spanned by

T -reduced monomials in k[F ] is denoted by R(T ).

The diamond lemma gives necessary and sufficient conditions for the set N(A) of normal

words to coincide with the set of T -reduced words in F . The key tool is the notion of ambiguity.

Let σ = (wσ, vσ), τ = (wτ , vτ ) be reductions in T . By an overlap ambiguity we mean a

quintuple (σ, τ, l, w, r), where 1 6= l, w, r ∈ F are such that wσ = wr and wτ = lw. A

quintuple (σ, τ, l, w, r) is called an inclusive ambiguity if wσ = w and wτ = lwr. For brevity

we will denote these ambiguities as l(wr) = (lw)r and l(w)r = (lwr), respectively. We will

also say that they are of type σ-τ . We say that the overlap (inclusive, respectively) ambiguity

is resolvable if vτr and lvσ (vτ and lvσr, respectively) have equal T -reduced forms. Recall the

following simplified version of Bergman’s diamond lemma.

Lemma 2. Let T be a reduction set in the free algebra k[F ] over a field k, with a fixed deg-lex

order in the free monoid F over X. Then the following conditions are equivalent:

• all ambiguities on T are resolvable,

• each monomial f ∈ F can be uniquely T -reduced,

• if I(T ) denotes the ideal of k[F ] generated by {w − v : (w, v) ∈ T} then k[F ] = I(T )⊕

R(T ) as vector spaces.

Moreover if the conditions above are satisfied then the k-algebra A = k[F ]/I(T ) can be iden-

tified with R(T ) equipped with a k-algebra structure with f · g defined as the T -reduced form

of fg, for f, g ∈ R(T ). In this case, {w − v : (w, v) ∈ T} is a Gröbner basis of A.

3 Some results and open questions

The use of diamond-lemma involves somehow-guessing the appropriate reduction set for an

algebra, even if it can be derived algorithmically (indeed, we use some packages of GAP to do

certain computations) This was successful in the case of Hecke-Kiselman algebras of oriented

graphs, as we were able to prove:

Theorem 3 (Okniński, M. (2018)). Let Θ be a finite simple oriented graph with vertices

V (Θ) = {x1, x2, . . . , xn}. Extend the natural ordering x1 < x2 < · · · < xn on the set V (Θ) to

the deg-lex order on the free monoid F = 〈V (Θ)〉. Consider the following set T of reductions

on the algebra k[F ]:

(i) (twt, tw), for any t ∈ V (Θ) and w ∈ F such that w 9 t,

(ii) (twt, wt), for any t ∈ V (Θ) and w ∈ F such that t9 w,

(iii) (t1wt2, t2t1w), for any t1, t2 ∈ V (Θ) and w ∈ F such that t1 > t2 and t2 = t1w.
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where for t ∈ V (Θ) and w ∈ F = 〈V (Θ)〉 we write w 9 t if t /∈ supp(w) and there are

no x ∈ supp(w) such that x → t in Θ. Similarly, we define t 9 w: again we assume that

t /∈ supp(w) and there is no arrow t → y, where y ∈ supp(w). Moreover, when t 9 w and

w 9 t, we write t = w. Then the set {w − v, where (w, v) ∈ T} forms a Gröbner basis of

the algebra k[HKΘ].

In other words, if a word in F does not contain a factor (a block of letters) of form twt, as

in (i) or (ii) or of form t1wt2, then it is reduced. And all elements of HKΘ can be obtained

in that way, as T -reduced elements.

This result, allows a number of corollaries, some of which were obtained in the earlier works.

Here are some of them:

Theorem 4 (Okninski, M. (2017)). Assume that Θ is a finite oriented simple graph. The

following conditions are equivalent.

(1) Θ does not contain two different cycles connected by an oriented path of length ­ 0,

(2) AΘ is a PI-algebra,

(3) GKdim(AΘ) <∞,

(4) the monoid HKΘ does not contain a free submonoid of rank 2.

Theorem 5 (Okninski, Wiertel (2018)). Assume that Θ is a finite oriented simple graph.

The following conditions are equivalent.

(1) AΘ is right Noetherian,

(2) AΘ is left Noetherian,

(3) each of the connected components of Θ is either an oriented cycle or an acyclic graph.

Corollary 6. The Hecke-Kiselman algebra of an oriented cycle embedds into the matrix

algebra over a field.

These results involved a careful considerations on the oriented cycle graph monoid HKXn ,

mentioned before. Its semigroup algebra has a lot of interesting properties. It can be proved

that its growth is linear, that is, its Gelfand-Kirillov dimension is 1. Moreover, its Gröbner

basis is finite, which is a non-trivial corollary from the description of the Gröbner basis in the

general oriented case. With great computational effort of Okniński and Wiertel it was proved,

that the cycle monoid allows a chain of ideals whose factors are co-finite with the generalized

semigroups of matrix types, known in the classical theory of representations of semigroups.

There is no place to comment on how are the ideals of the Hecke-Kilesman algebras studied,

but some methods require representation ideas, as the one used before in the proof of the

finiteness of the acyclic graph monoid, some require the use of graph automorphisms that

yield some word-invariant operations in the monoid.

Another result that followed from those main theorem concerned the automaton property of

Hecke-Kiselman monoids - an especially elegant property for a finitely generated algebra.

Theorem 7 (Okninski, M. (2018)). Assume that Θ is a finite oriented simple graph. Then

the algebra AΘ is automaton, that is: the set N(A) of normal words of A is obtained from

a finite subset of F by applying a finite sequence of operations of union, multiplication and

operation ∗ defined by T ∗ =
⋃
i­1 T

i, for T ⊆ F .
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In other words, and this is famous Kleene theorem, the set of normal words of A is determined

by a finite deterministic automaton.

The class of automaton algebras was introduced by Ufnarovskii in the late 80’. The main

motivation was to study a class of finitely generated algebras that generalizes the class of

algebras that admit a finite Gröbner basis with respect to some choice of generators and

an ordering on monomials. The difficulty here lies in the fact that there are infinitely many

generating sets as well as infinitely many admissible orderings on monomials to deal with.

There are examples of algebras with finite Gröbner bases with respect to one ordering, and

infinite bases with respect to the other. Up until recently it was not known whether for any

of known examples of automaton algebras with infinite Gröbner bases with respect to certa-

in orderings one could find a better ordering that would yield a finite Gröbner basis. First

counterexamples were found by Iyudu and Shkarin.

There are many results indicating that the class of automaton algebras not only has better

computational properties but also several structural properties that are better than in the

class of arbitrary finitely generated algebras. For example, in this context one can refer to

results on the Gelfand-Kirillov dimension, results on the radical in the case of monomial au-

tomaton algebras by Ufnarovskii, results on prime algebras of this type by Jason Bell, and

also structural results concerned with the special case of finitely presented monomial algebras

(Okniński). In particular, finitely generated algebras of the following types are automaton:

commutative algebras, algebras defined by not more than two quadratic relations, algebras

for which all the defining relations have the form [xixj ] = 0, for some pairs of generators.

Moreover, algebras that are finite modules over commutative finitely generated subalgebras

are also of this type (Cedo, Okniński).

In our setting there are many examples of algebras with infinite Gröbner basis. Attach even

one outgoing arrow to a cycle, and you will obtain an algebra of Gelfand-Kirillov dimension

2, with an infinite Gröbner basis. As there are still many open question on the structure of

Hecke-Kiselman algebras, even the ones obtained from the oriented cycle, for instance: what

are the prime algebras, semiprime, semiprimitive, are the Hecke-Kiselman algebras cellular?

There is also a context of mixed graphs Θ and the corresponding Hecke-Kiselman algebras.

Here all the questions raised in the beginning are still unanswered. What are finite Hecke-

Kiselman monoids? Are they J-trivial? Are there any representations that would prove useful?

* * *

Many thanks to Łukasz Kubat and Geoffrey Jannsens for making this talk possible.
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