On Hecke-Kiselman monoids

Arkadiusz Męcel

University of Warsaw

a.mecel@mimuw.edu.pl

Algebra Seminar, 17.11.2016

Definition

By a **simple digraph** we mean a directed graph $\Theta = (V, E)$ without loops and multiple arrows, where $V = \{1, ..., n\}$ and

- if (i, j) ∈ E and (j, i) ∈ E we say that (i, j) is an edge between i and j, denoted as i − j,
- if (i, j) ∈ E and (j, i) ∉ E we say that (i, j) is an arrow from i to j, denoted as i → j.

There is a bijection between the set M_n of all simple digraphs (V, E), where $V = \{1, ..., n\}$ and the set of all anti-reflexive binary relations on V.

Definition (Ganyushkin, Mazorchuk, 2011)

For any simple digraph $\Theta \in M_n$ the corresponding monoid HK_{Θ} generated by idempotents a_i , $i \in \{1, ..., n\}$ is defined by the following relations, for any $i \neq j$:

An example

If we take the following digraph $\Theta\in\mathcal{M}_4$

then the corresponding monoid HK_{Θ} is generated by idempotents a_1, a_2, a_3, a_4 and by the following relations:

$$a_4a_i = a_ia_4$$
, for $i = 1, 2, 3$, $a_1a_3 = a_3a_1$,

 $a_1a_2a_1 = a_2a_1a_2 = a_2a_1, \quad a_2a_3a_2 = a_3a_2a_3.$

Open problems:

- For which Θ is HK_{Θ} finite?
- Is there a faithful representation of HK_{Θ} in $M_{n \times n}(\mathbb{N})$?
- Is HK_{Θ} always a \mathcal{J} -trivial monoid?

If we assume that $\Theta \in M_n$ has no oriented arrows then HK_{Θ} is generated by *n* idempotents a_1, \ldots, a_n and satisfies relations:

 $a_i a_j = a_j a_j$, if there is no edge i-j in Θ ,

 $a_i a_j a_i = a_j a_i a_j$, if there is an edge i-j in Θ .

This is a special case of the so-called **Coxeter monoid** M(W) (also called a 0**-Hecke monoid**) of a Coxeter group W. Every such monoid has *n* idempotent generators a_1, \ldots, a_n and satisfies the following relations:

$$\underbrace{a_i a_j a_i \dots}_{m_{ij}} = \underbrace{a_j a_i a_j \dots}_{m_{ij}},$$

where $M = (m_{ij}) \in M_{n \times n}(\mathbb{N}_+)$ is a Coxeter matrix of W.

Let
$$M = (m_{ij}) \in M_{n \times n}(\mathbb{N}_+ \cup \{\infty\})$$
 such that:

- M is symmetric
- $m_{ij} = 1 \Leftrightarrow i = j$.

The Coxeter group of *M* is defined as:

$$W = \langle \mathbf{s}_1, \dots, \mathbf{s}_n | (\mathbf{s}_i \mathbf{s}_j)^{m_{ij}} = 1, \text{ for } |m_{ij}| < \infty
angle$$

Examples:

- the symmetric groups Σ_n ,
- symmetry groups for regular polytopes,
- Weyl groups.

	the Coxeter group W	the Coxeter monoid $M(W)$
generators	s ₁ ,, s _n	a ₁ ,,a _n
relations	s _i ² = 1	$a_i^2 = a_i$
for <i>m_{ij}</i> > 1:	$\underbrace{\mathbf{s}_{i}\mathbf{s}_{j}\mathbf{s}_{i}\ldots}_{m_{ij}}=\underbrace{\mathbf{s}_{j}\mathbf{s}_{i}\mathbf{s}_{j}\ldots}_{m_{ij}}$	$\underbrace{a_i a_j a_i \dots}_{m_{ij}} = \underbrace{a_j a_i a_j \dots}_{m_{ij}}$

An important fact (use exchange property!):

|W| = |M(W)|.

To any Coxeter matrix $M = (m_{ij}) \in M_{n \times n}(\mathbb{N}_+ \cup \{\infty\})$ we associate a graph (V, E), where

- $V = \{1, 2, ..., n\}$
- $\{i,j\} \in E \Leftrightarrow m_{ij} \geq 3$
- and edge has a label m_{ij} if $m_{ij} > 3$.

For example:

$$M = (m_{ij}) = \begin{bmatrix} 1 & 3 & 2 & 2 \\ 3 & 1 & 4 & \infty \\ 2 & 4 & 1 & 2 \\ 2 & \infty & 2 & 1 \end{bmatrix} \quad \longleftrightarrow \quad s_1^{\infty} \qquad s_2^{\infty}$$

S₄

S₃

The graphs of finite connected Coxeter groups:

Corollary

If Θ is a simple unoriented graph then the Hecke-Kiselman monoid HK_Θ is finite if and only if Θ is a disjoint union of Dynkin diagrams.

Definition

If *W* is a Coxeter group of *n* generators and K is a field then the Iwahori-Hecke algebra $\mathcal{H}_q(W)$ is defined, for every $q \in K$, by generators S_1, \ldots, S_n and relations:

$$S_i^2 = q + (q-1)S_i, \quad \underbrace{S_i S_j S_i \dots}_{m_{ij}} = \underbrace{S_j S_i S_j \dots}_{m_{ij}}.$$

- For q = 1 this is just the group algebra K[W],
- for q = 0 this is a semigroup algebra of the Coxeter monoid M(W) – the 0-Hecke algebra,
- the representation theory of *H_q(W)* is quite well understood, for *q* ≠ 0,
- there are still a lot of questions about 0-Hecke algebras.

Interlude: tropicalization and duality theorems

"Tropicalization" means: "replacing" a sum or an integral by a supremum. An example:

the *I^p*-norm:

$$||\mathbf{x}||_{\mathbf{p}} = \left(\sum_{j=1}^{n} |\mathbf{x}_j|^{\mathbf{p}}\right)^{1/\mathbf{p}}, \quad \mathbf{x} \in \mathbb{R}^n, \quad 1 \le \mathbf{p} < +\infty$$

becomes the sup-norm:

$$||\mathbf{x}||_{\infty} = \left(\sup_{j=1,\dots,n} |\mathbf{x}_j|^p\right)^{1/p} = \sup_{j=1,\dots,n} |\mathbf{x}_j|. \quad \mathbf{x} \in \mathbb{R}^n$$

Fenchel conjugate

Let *X* be a real normed space. Take any function $f : X \to \overline{\mathbb{R}}$. Then the Fenchel conjugate $f^* : X^* \to \overline{\mathbb{R}}$ is defined as

$$f^*(y) = \sup_{x \in X} (y(x) - f(x)).$$

Examples and motivations:

- If $X = \mathbb{R}^n$ then $f^*(y) = \sup_{x \in \mathbb{R}^n} (y \circ x f(x))$, for $y \in \mathbb{R}^n$.
- Let $f : \mathbb{R} \to \overline{\mathbb{R}}$ be convex and $y(z) = f(z_0) + f'(z_0)(z z_0)$ be the tangent to the graph of y in $(z_0, f(z_0))$. Then

$$f^*(y) = -y(0) = f'(z_0)z_0 - f(z_0).$$

 interpretations in economy, computer modelling, optimization theory...

Interlude: tropicalization and duality theorems

Theorem (Fenchel-Moreau (1949?)

Let *X* be a normed space and $f : X \to \overline{\mathbb{R}}$. Then we have an equality $f^{**} = f$ if and only if one of the conditions is satisfied:

• f is convex, lower semicontinuous and proper,

•
$$f\equiv+\infty$$
,

•
$$f \equiv -\infty$$
.

Remarks:

- If *f*^{**} = *f* then *f* can be represented as a supremum of affine functions,
- If X = R then you can think about the Fenchel transform as a "tropicalization" of a Laplace transform:

$$(\mathcal{L}g)(\zeta) = \int\limits_{0}^{\infty} g(x) e^{-\zeta x} dx, \quad \zeta \in \mathbb{R}$$

Motivations (2): the Kiselman monoids

Consider a monoid G(E) generated by all compositions of three closure operators c, l, m defined on functions from $E \to \overline{\mathbb{R}}$:

• the **convex hull** of *f*:

$$c(f)(\mathbf{x}) = \inf \left\{ \sum_{i=1}^{N} \lambda_i f(\mathbf{x}_i) | \lambda_i > 0, f(\mathbf{x}_i) < +\infty, \sum_{i=1}^{N} \lambda_i \mathbf{x}_i = \mathbf{x} \right\},\$$

• the largest lower semicontinuous minorant of f:

$$I(f)(x) = \liminf_{y\to x} f(y),$$

• the "proper function checking" operator:

$$m(f)(x) = egin{cases} f(x), & ext{if } f(y) > -\infty, ext{ for all } y \in E, \ -\infty, & ext{otherwise.} \end{cases}$$

Theorem (Kiselman, 2002)

If *E* is a normed space of infinite dimension over \mathbb{R} then the monoid *G*(*E*) consists of 18 elements. It is generated by *c*, *l*, *m* and the following relations give a presentation of *G*(*E*):

$$c^2=c, \quad l^2=l, \quad m^2=m$$

clc = lcl = lc, cmc = mcm = mc, lml = mlm = ml.

Moreover, there exists a faithful representation of G(E) by 3x3 matrices with non-negative integer coefficients. Namely, we can represent *c*, *I*, *m* by the following matrices *C*, *L*, *M*:

$$C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad L = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Definition (Ganyushkin, Mazorchuk 2002)

By a Kiselman semigroup K_n we denote the monoid generated by *n* elements a_1, \ldots, a_n with the following relations:

$$a_1^2 = a_1, \ldots, a_n^2 = a_n$$

$$a_i a_j a_i = a_j a_i a_j = a_j a_i, \quad 1 \leq i < j \leq n.$$

Theorem (Kudryavtseva, Mazorchuk, 2009)

The monoid K_n :

- is finite for all n,
- has a faithful representation by $n \times n$ matrices over \mathbb{N}
- is \mathcal{J} -trivial, namely $K_n a K_n = K_n b K_n \Rightarrow a = b$.

The finiteness of K_n (1)

Proof. Let *e* be the unit element in K_n . For a finite alphabet \mathcal{A} , we denote by $W(\mathcal{A})$ the set of all finite words over this alphabet, including the empty word. Let $I : W(\mathcal{A}) \to \mathbb{N} \cup \{0\}$ be the lenght function.

First, observe that:

- (i) if $i \in \{1, \ldots, n\}$ and $w \in W(\{a_1, \ldots, a_{i-1}\})$. Then we have $a_i w a_i = a_i w$ in K_n ,
- (ii) if $i \in \{1, ..., n\}$ and $w \in W(\{a_{i+1}, ..., a_n\})$. Then we have $a_i w a_i = w a_i$ in K_n .

We (only) prove (i) by induction on I(w). For I(w) = 0 and I(w) = 1 this is just the definition of K_n . Let I(w) > 1 and write $w = w'a_j$, for some j < i. Then I(w') = I(w) - 1. Thus:

$$a_i w a_i = a_i w' a_j a_i \stackrel{i}{=} a_i w' a_i a_j a_i \stackrel{d}{=} a_i w' a_i a_j \stackrel{i}{=} a_i w' a_j = a_i w.$$

The finiteness of K_n (2)

Proof (continued). Second, observe that if $\alpha \in K_n$, $\alpha \neq e$ and if $w \in W(\{a_1, \ldots, a_n\})$ is a word of the shortest possible lenght such that $\alpha = w$ in K_n , then:

(iii) for $i \leq \lfloor \frac{n}{2} \rfloor$ the letter a_i occurs in w at most 2^{i-1} times, (iv) for $i \geq \lfloor \frac{n+1}{2} \rfloor$ the letter a_i occurs in w at most 2^{n-i} times.

We (only) prove (iii) by induction on *i*. If the letter a_1 occurs in *w* more than once, the word *w* can be reduced (shortened) using (ii). Let $1 < i \leq \lfloor \frac{n}{2} \rfloor$. By the inductive hypothesis the total number of occurencies of a_1, \ldots, a_{i-1} in *w* does not exceed $2^{i-1} - 1$. Hence we can write

$$w = w_1 b_1 w_2 b_2 w_3 \dots w_{2^{i-1}-1} b_{2^{i-1}-1} w_{2^{i-1}},$$

where $b_j \in \{a_1, \ldots, a_{i-1}\}$, and $w_j \in W(\{a_i, \ldots, a_n\})$. If a_i occurs in some w_j more than once, the word w_j can be reduced by (ii). Thus a_i may occur no more than 2^{i-1} times in w.

The finiteness of K_n (3)

Proof (continued). From (iii) and (iv) it follows that the length of any reduced word $w \in W(\{a_1, ..., a_n\})$ is less than, or equal to:

$$L(n) = \begin{cases} \sum_{i=1}^{k} 2^{i-1} + \sum_{i=k+1}^{n} 2^{n-i} = 2^{k+1} - 2, & n = 2k \\ \\ \sum_{i=1}^{k+1} 2^{i-1} + \sum_{i=k+2}^{n} 2^{n-i} = 3 \cdot 2^{k} - 2, & n = 2k + 2 \end{cases}$$

Since K_n is generated by *n* elements and every element of K_n , different from the unit element *e*, can be written as a product of at most L(n) generators, we can see that:

$$|K_n| \leq 1 + n^{L(n)}.$$

Thus K_n is finite.

Definition

The monoid *M* is \mathcal{J} -trivial if and only if for all $a, b \in M$ we have:

 $MaM = MbM \Rightarrow a = b.$

Connections:

- finite automata theory (Simon 72':: a language is piecewise testable iff its syntactic monoid is *J*-trivial),
- theory of partially ordered monoids (Straubing-Therien 85': every finite \mathcal{J} -trivial monoid is a quotient of a finite partially ordered monoid satisfying the identity $x \leq 1$)
- theory of matrix semigroups (every *J*-trivial monoid is a quotient of a monoid of unitriangular matrices),
- representation theory of 0-Hecke algebras (every 0-Hecke algebra is a semigroup algebra of a \mathcal{J} -trivial monoid).

Definition

We say that the monoid *M* is partially ordered if there exists a partial order \leq on *M* such that:

- 1 is the maximum element,
- ≤ is compatible with mutliplication on *M*, namely for all *m*₁, *m*'₁, *m*₂, *m*'₂ in *M* we have:

$$m_1 \leq m'_1, m_2 \leq m'_2 \Rightarrow m_1 m_2 \leq m'_1 m'_2.$$

Example. $M = \{1, x, y, z, 0\}$ with relations $x^2 = x, y^2 = y$, xz = zy = z, and all other products = 0. Then:

$$MxM = \{x, z, 0\}, MyM = \{y, z, 0\}, MzM = \{z, 0\}.$$

Thus *M* is \mathcal{J} -trivial. But no partial order \leq is compatible with multiplication in *M*. Otherwise we would have:

$$0=z^2\leq z=xzy\leq xy=0\Rightarrow z=0.$$

Fact. A partially ordered finite monoid M is \mathcal{J} -trivial.

Proof. If xM = yM, then x = ya and y = xb, for some $a, b \in M$. Since $a \le 1$ this implies $x = ya \le y$ and $y = xb \le x$ so that x = y. Analogously $Mx = My \Rightarrow x = y$. But a finite monoid that is both \mathcal{R} -trivial and \mathcal{L} -trivial is \mathcal{J} -trivial.

Corollary. A finite Coxeter (0-Hecke) monoid M(W) is \mathcal{J} -trivial.

An idea for the proof. We define the so-called Bruhat order \leq_B on the Coxeter group W. Let $w = s_{i_1} \dots s_{i_j}$ be a reduced expression for $w \in W$. Then $u \leq_B w$ if and only if there exists a reduced expression $u = s_{j_1} \dots s_{j_k}$, where $j_1 \dots j_k$ is a subword of $i_1 \dots i_l$. Then \leq_B is a partial order (classical fact) on both W and M(W). Moreover \leq_B is compatible with multiplication on M(W) and 1 is the minimal element...

Another interesting example of a \mathcal{J} -trivial monoid.

Monoid of order preserving regression (contraction) functions Let (P, \leq_P) be a poset. The set $\mathcal{OR}(P)$ of functions $f : P \to P$ which are:

• order preserving: for all $x, y \in P$

$$\mathbf{x} \leq_{P} \mathbf{y} \Rightarrow f(\mathbf{x}) \leq f(\mathbf{y}),$$

• regressive (alt. contractions): for all $x \in P$ one has $f(x) \leq x$.

In fact all finite \mathcal{J} -trivial monoids "divide" one of these kind (it a theorem of J.E. Pin):

Certain results on HK_{Θ}

Basic facts:

Let Θ, Ψ ∈ M_n and assume that Ψ is obtained from Θ by deleting some edges. Then mapping between vertices of Θ, Ψ extends uniquely to an epimorphism HK_Θ → HK_Ψ.

Proof. For any two idempotents x, y of any semigroup from xy = yx it follows that: xyx = xxy = xy = xyy = yxy. Thus any relations satisfied by canonical generators of HK_{Θ} are satisfied by the corresponding generators in HK_{Ψ} .

 Let m, n ∈ N and Θ ∈ M_m, Ψ ∈ M_n. Assume that f : Θ → Ψ os a full embedding of graphs. Then the mapping e_i → e_{f(i)} induces a monomorphism *f* : HK_Θ → HK_Ψ.

Theorem (Mazorchuk, Ganyushkin)

Let $m, n \in \mathbb{N}$ and $\Theta \in \mathcal{M}_m, \Psi \in \mathcal{M}_n$. Then the semigroups HK_{Θ} and HK_{Ψ} are isomorphic if and only if the graphs Θ and Ψ are isomorphic.

Basic facts on the finiteness problem for HK_{Θ} .

- Let Θ, Ψ ∈ M_n. Assume that HK_Θ is finite and that Ψ is obtained from Θ by either:
 - orienting an edge or,
 - removing an arrow or,
 - removing all arrows connected to a sink or source vertex.

Then HK_{Ψ} is finite.

- If HK_{Θ} is finite then there are no oriented cycles in Θ .
- Let Θ, Ψ ∈ M_n. Assume that HK_Θ is finite and that Ψ is obtained from Θ by removing every arrow. Then Ψ is a disjoint union of Dynkin diagrams. These are called the Coxeter componets of Θ.

Coxeter components and the finiteness problem

- Fact. Let C be a Dynkin diagram and ⊖ an oriented graph obtained from C by choosing an orientation of every edge. Then HK_⊖ is finite.
- The general approach to the finiteness problem. Take a simple digraph ⊖ with *n* elements and try to understand the case when removing all arrows from ⊖ leads to a small number of Coxeter components.
- Theorem (Aragona, D'Andrea 2012). Let Θ ∈ M_n be an acyclic simple digraph. If n = 3 then HK_Θ is finite. If n = 4 then HK_Θ is finite except for the case when Θ is of form:

Consider two digraphs Θ and Ψ in \mathcal{M}_n . We say that $\Theta \subseteq \Psi$ if and only if Θ is a subgraph of Ψ . In the language of relations we have an inclusion $\Theta \subseteq \Psi$.

We also define two members of \mathcal{M}_n :

•
$$\Theta_{C} = \{i + 1, i\} \mid 1, 2, \dots, n - 1\}$$

•
$$\Theta_{\kappa} = \{(j, i) \mid 1 \le i < j \le n\}.$$

The Hecke-Kiselman monoids of these relations are:

- HK_{⊖c} the Catalan monoid C_n (it is a monoid OR(P) on a chain 1 < ... < n)
- $HK_{\Theta_{\kappa}}$ and the Kiselman monoid K_n .

Ashikhmin, Volkov, Zhang (2015)

Let $n \ge 2$. Then for every relation $\Theta \in \mathcal{M}_n$ such that $\Theta_C \subseteq \Theta \subseteq \Theta_K$, the set of identities of the Hecke-Kiselman monoid HK_{Θ} is the following:

$$\{w \equiv w' \Leftrightarrow w \sim_n w'\},\$$

where $w \sim_n w'$ means that the words w and w' have the same scattered subwords of lenght $\leq n$. In particular:

- for n = 2, 3 the monoid HK_{Θ} is finitely based,
- for $n \ge 4$ the monoid HK_{Θ} is nonfinitely based.

Corollary: The Hecke-Kiselman monoids HK_{Θ} are \mathcal{J} -trivial for all $\Theta \subseteq \Theta_{\mathcal{K}}$.

- Ashikhmin D.N., Volkov M.V., Zhang W.T.: *The finite basis problem for Kiselman monoids*. Demonstratio Mathematica 4 (2015).
- (2) Aragona R., D'Andrea A.: Hecke-Kiselman monoids of small cardinality. Semigroup Forum 86 (1) (2013), 32-40.
- (3) Ganyushkin O., Mazorchuk V.: On Kiselman quotients of 0-Hecke Monoids. Int. Electron. J. Algebra 10(2) (2011), 174-191.
- (4) Kiselman Ch.: A semigroup of operators in convexity theory. Trans. Amer. Math. Soc. 354 (2002), no. 5, 2035-2053.
- (5) Kudryavtseva G., Mazorchuk V., On Kiselmanâs semigroup, Yokohama Math. J., 55(1) (2009), 21-46.