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Notation

1 R – an associative ring (with identity!),

2 U(R) – the unit group of R ,

3 L(R) – the set of left ideals of R ,

4 J(R) – the Jacobson radical of a ring R ,

5 A – an algebra over a field K
(in most cases – algebraically closed).
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Conjugacy classes of left ideals

Definition

Let U(R) be the group of units of R . Consider an action
U(R) × R → R of U(R) on R such that

(u, r) ↦ uru−1, for u ∈ U(R), r ∈ R .

The orbits of this action are called conjugacy classes.
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Let U(R) be the group of units of R . Consider an action
U(R) × R → R of U(R) on R such that

(u, r) ↦ uru−1, for u ∈ U(R), r ∈ R .

The orbits of this action are called conjugacy classes.
By [L] we denote the conjugacy class of a left ideal L in R .
By C(R) we denote the set of conjugacy classes of left ideals on R .
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The semigroup C(R)

Definition

If L1,L2 ∈ L(R) and g ,h ∈ U(R), then L1gL2h = L1L2h. So we can
equip the set C(R) with a binary operation:

[L1][L2] ∶= [L1L2].

This operation is well defined and associative, so there is a natural
structure of a semigroup on C(R).

What information on R can be deduced from C(R)?
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Examples (1)

R =Mn(D)

If R is a simple ring of matrices Mn(D) over a division ring D,
then C(Mn(D)) consists of exactly n + 1 elements. Every nonzero
left ideal L of Mn(D) is a conjugate of one of the ideals:

Mn(D)(e11 + . . . + ejj), for 1 ≤ j ≤ n,

eij are matrix units in Mn(D).

Corollary

If R is an artinian ring with identity and J(R) = 0 then C(R) is
finite.
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Different actions of the unit group

1 (J. Han) the conjugate action on R :

(g , r)↦ grg−1, for g ∈ U(R), r ∈ R ,

2 (J. Han, Y. Hirano) the regular action on R :

(g , r)↦ gr , for g ∈ U(R), r ∈ R ,

3 (J. Okniński & L. Renner, J. Krempa & M. Hryniewicka)
U(R)-orbits:

(g ,h, r)↦ grh−1, for g ,h ∈ U(R), r ∈ R ,
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Some general lemmas

Lemma

Let R be a left perfect ring with identity. Then the U(R)-orbits on
R are precisely the conjugacy classes of principal left ideals.

Lemma

Let R be a semilocal ring with identity. Assume that L,L′ are left
ideals of R . Then R/L ≃ R/L′ are isomorphic, as left R-modules, if
and only if L = L′g , for some g ∈ U(R).
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Examples (2)

Definition

Let A be a finite dimensional algebra over a field K. We say that A
is of finite representation type if A has finitely many
isomorphism classes of finite dimensional indecomposable modules.

Theorem (J. Okniński, L. Renner)

Let A be a finite dimensional algebra over a field K.

if A is of finite representation type, then C(A) is finite,

if the field K is algebraically closed and if C(Mn(A)) is finite
for all n > 1,then A is of finite representation type.
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The conjugacy classes in the Jacobson radical

Theorem

Let A be a finite dimensional algebra with identity over an arbitrary
field K. The following conditions are equivalent:

C(A) is finite,

the number of conjugacy classes of nilpotent left ideals in A is
finite.
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When the radical is nonzero

Theorem

Let A be a finite dimensional algebra over an algebraically closed
field K and let J(A)2 = 0. We know when C(A) is finite in the
following cases:

A/J(A) is a direct sum of finitely many copies of K

A/J(A) ≃Mn1(K)⊕ . . .⊕Mnk (K), for ni ≤ 2

A/J(A) ≃Mn1(K)⊕ . . .⊕Mnk (K), for ni ≥ 6
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C(A) as a finite invariant of an algebra A

Theorem

Let A,B be finite dimensional algebras over an algebraically
closed field K. Assume that J(A)2 = 0 and C(A) is finite. If
the semigroups C(A) and C(B) are isomorphic then the
algebras A and B are isomorphic.

Let A,B be finite dimensional algebras over an algebraically
closed field K. If the semigroups C(A) and C(B) are finite
and isomorphic, then the algebras A/J(A) and B/J(B) are
isomorphic.
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Isomorpshim problem

Question

Take two algebras A,B , finite dimensional algebras over an
algebraically closed field K such that C(A) ≃ C(B) as finite
semigroups. Is A ≃ B?

Probably not, so maybe consider the case when:

A/J(A) is a direct product of K,

A/J(A) ≃Mn(K), for some n,

A is of finite representation type?
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5 Mȩcel A., Okniński J.: Conjugacy classes of left ideals of a
finite dimensional algebra, Publ. Mat. 57 (2013), 477–496.

6 Okniński J., Renner L.: Algebras with finitely many orbits, J.
Algebra 264 (2003), 479–495.

Arkadiusz Męcel Conjugacy classes of left ideals of an associative algebra


