Większość tekstów pochodzi z archiwum miesięcznika Delta
oraz pisma Matematyka-Społeczeństwo-Nauczanie.
Koneserów zachęcam do zajrzenia do przedwojennych pism ,,Parametr" oraz ,,Młody Matematyk".
Algebra liniowa
- K. Nowiński, Iloczyn skalarny, Delta 9/1976
Twierdzenie kosinusów, iloczyn skalarny i prostopadłość w przestrzeniach metrycznych.
- M. Kordos, Najregularniejsze i najpopularniejsze geometrie, Delta 12/1981
Modele geometrii nieeuklidesowych i odpowiedni wybór formy dwuliniowej dla uzyskania prostopadłości.
- Z. Sawoń, Lemat Kuratowskiego-Zorna, Delta 9/1982
Dowód istnienia bazy Hamela ciała liczb rzeczywistych nad ciałem liczb wymiernych, dającej nieciągłe rozwiązanie równania Cauchy'ego.
- K. Pawłowski, O liniowych równaniach różnicowych, Delta 2/1983
Rekurencje liniowe i ich zastosowania, między innymi do dowodzenia znanych tożsamości.
- E. Puczyłowski, Algebra liniowa i matematyka, MSN 3 (1989)
Kilka klasycznych i raczej trudnych, choć elementarnie formułujących się zagadnień, które rozwiązuje się dość prosto metodami algebry liniowej.
- Z. Marciniak, Dlaczego w przestrzeni trójwymiarowej nie ma przyzwoitego mnożenia?, Delta 4/1996
Proste zastosowanie algebry liniowej do problemu wprowadzenia mnożenia na trójkach liczb rzeczywistych.
- H, Żołądek, Co ma wspólnego tożsamość Jacobiego z przecinaniem się wysokości trójkąta?, Delta 3/2000
O zastosowaniach algebraicznych własności iloczynu wektorowego oraz wstępnie o algebrach Liego.
- Z. Marciniak, O dwóch, pozornie odległych, pytaniach, MSN 35 (2005)
Problem istnienia struktury ciała w rzeczywistej trójwymiarowej przestrzeni i zagadnienie zanurzalności płaszyzny rzutowej w ową przestrzeń.
- T. Lenarcik, Grafy i macierze, MSN 49 (2011)
Grafy i ich macierze sąsiedztwa, twierdzenie Cayleya-Hamiltona i jego ,,grafowy" dowód.
- B. Ciesielska, A. Kowalczyk, Twierdzenie Perrona-Frobeniusa i jego zastosowanie w algorytmie Page Rank,
Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2015) .
- T. Bartnicki. Z. Miechowicz, Ile jest podprzestrzeni?, Delta 2018.
Liczba różnych k-wymiarowych podprzestrzeni liniowych przestrzeni n-wymiarowej nad q-elementowym ciałem.
Teoria grup
- J. Mulholland, Permutation Puzzles. A Mathematical Perspective
Piękna publikacja (w pełni legalnie dostępna) ukazująca zastosowania podstaw teorii grup w teorii znanych łamigłówek, w tym kostki Rubika.
- M. Kordos, Grupy krystalograficzne, Delta 8/1986
O pewnych grupach izometrii płaszczyzny, dla których obrazy pewnej figury przy tych izometriach tworzą parkiet.
- E. Puczyłowski, O liczbie osi symetrii wielokąta, Delta 1/1987
Liczba osi symetrii wielokąta, jeśli jest niezerowa, dzieli liczbę boków.
- Z. Marciniak, Czy geometrzy znają wszystkie grupy?, Delta 8/1987
Czy grupa leniwych permutacji jest grupą izometrii pewnej figury w n-wymiarowej przestrzeni Euklidesowej?
- W. Żelazko, O pewnym problemie Burnside'a, Delta 8/1988
O pewnych zagadnieniach dotyczących grup skończenie generowanych, które jeszcze wtedy nie były w pełni rozstrzygnięte.
- Z. Marciniak, O klasyfikacji grup skończonych, Delta 12/1988
Z lotu ptaka o skończonych grupach prostych.
- M. Kordos, Zwykłe izometrie zwykłej płaszczyzny, Delta 12/1988
O tym, że grupa izometrii płaszczyzny euklidesowej spełnia tożsamość.
- W. Wojtyński, Grupy Liego, Delta 12/1988
To takie grupy, które można lokalnie utożsamić z fragmentem n-wymiarowej przestrzeni (rzeczywistej).
- Z. Marciniak, Przykład teorii aksjomatycznej: grupy, MSN 6 (1991)
O kilku grupach z życia wziętych oraz o aksjomatach.
- J. Konarski, Geometria w algebrze?, MSN 6 (1991)
O zastosowaniu krat (podgrup w R^n) i twierdzenia Minkowskiego do dowodów twierdzeń z teorii liczb.
- Z. Marciniak, O liczbie kolorów, MSN 23 (1999)
Działanie grup i zliczanie orbit w zagadnieniach kombinatorycznych.
- Cz. Bagiński, E. Puczyłowski, O kilku zastosowaniach grup i pierścieni grupowych, MSN 41 (2008)
Przegląd zadań z teorii grup, które rozwiązać można za pomocą pierścieni grupowych.
- K. Muraszkowska, E. Puczyłowski, Cztery zadania, jedno rozwiązanie, Delta 11/2012
O tym co pojęcie rzędu elementu w grupie ma wspólnego z liczbami Fermata, długością okresu ułamka, liczbą osi symetrii i włączaniem światła.
- J. Jaszuńska, O kul rozmnażaniu, Delta 3/2017
Paradoksalnie artykuł jest o tym, że wolną podgrupę o dwóch generatorach możemy znalezć w grupie izometrii przestrzeni trójwymiarowej.
Teoria pierścieni i ciał
- M. Bryński, Liczba pierwsza a nierozkładalna, Delta 5/1974
Między innymi o niejednoznaczności rozkładu w pierścieniu liczb całkowitych rozszerzonym o pierwiastek z 5.
- M. Bryński, Liczby algebraiczne całkowite, Delta 8/1974
O ważnej klasie liczb rzeczywistych - pierwiastkach wielomianów unormowanych o współczynnikach całkowitych.
- J. Ławrynowicz, O liczbach zespolonych i wielokątach foremnych, Delta 3/1978
Geometria liczb zespolonych oraz jej zastosowania m.in. w trygonometrii.
- W. Narkiewicz, Jednoznaczność rozkładu i liczba klas, Delta 9/1979
Równoważność ideałów w pierścieniach kwadratowych i cyklotomicznych versus problem jednoznaczności rozkładu.
- Problem Köthe, Delta 4/1981
Informacja o jednym z najważniejszych problemów współczesnej algebry nieprzemiennej.
- Zasadnicze twierdzenie algebry, Delta 1/1991
Wielomian stopnia n ma n pierwiastków zespolona - szkic historii problemu.
- W. Więsław, Skąd się wzięły ciała w algebrze?, MSN 18 (1997)
Ciała, choć nienazwane, wskazać można już u Eulera czy Gaussa, a pózniej u badających problem Fermata - Kroneckera i Kummera.
- K. Szymiczek, Sumy kwadratów wielomianów i funkcji wymiernych, Delta 8/1997
O przedstawianiu elementów pierścieni za pomocą sum kwadratów minimalnej długości.
- Ł. Wiechecki, Teoria Galois dla bardzo niecierpliwych, Delta 11/2000
Jak dowodzi się nieistnienia wzorów na pierwiastki wielomianów stopni od 5 w górę, bez użycia metod matematyki wyższej.
- M. Krych, Skąd się wzięła liczba i oraz nieliczne przykłady niecałkiem oczywistych jej zastosowań, MSN 34 (2005)
Liczba i, a rozwiązywanie równań wielomianowych, z przykładami zastosowań problemu jednoznacznego rozkładu w teorii liczb.
- Z. Marciniak, Liczby zespolone i kwaterniony, Delta 10/2016
O tym jak i po co rozszerzano zbiory liczbowe i jakie problemy pozwoliło to rozwiązać.
- M. Donten-Bury, Symetrie ciał i grupy: teoria Galois, Delta 9/2017
Nierozwiązalność, niekonstruowalność, a także niewykonalność w telegraficznym skrócie.
Algebra uniwersalna
- W. Bartol, O analogiach, algebrach i przestrzeniach, Delta 10/1980
Wprowadzenie do tematyki algebr Boole'a.
- O znaczeniu równości, Delta 6/1982
Wprowadzenie do algebry uniwersalnej i klas ,,definiowalnych równościowo" (rozmaitości)
(Elementarna) teoria liczb
- A. Rotkiewicz, O ,,wielkim Twierdzeniu Fermata", Delta 10/1974
Historia i ówczesny status twierdzenia, a wraz z nim ciekawe zadanie z XXI OM.
- A. Rotkiewicz, Zagadnienie Catalana, Delta 08/1975
Artykuł z czasów, gdy twierdzenie Mihăilescu było jeszcze hipotezą Catalana.
- M. Bryński, Konstrukcje geometryczne, Delta 06/1976
Algebraiczne podejście do rozwiązywania starożytnych problemów konstrukcyjnych.
- A. Mąkowski, Liczby pierwsze, Delta 12/1976
Istnienie i jednoznaczność rozkładu. Różne dowody istnienia nieskończenie wielu liczb pierwszych.
- K. Szymiczek, Zasada lokalno-globalna, Delta 2/1980
Rozwiązywanie równań typu x^2 + y^2 = nz^2 oraz ogólniejszych. O twierdzeniu Minkowskiego-Haasego.
- S. Balcerzyk, M. Szurek, Nieco historii matematyki w wykładzie algebry, Delta 5/1981
Jednoznaczność rozkładu i jej historyczne powiązania z Wielkim Twierdeniem Fermata
- J. Ryll, Zadanie Fryderyka II, Delta 10/1985
Problem istnienia ciągów arytmetycznych kwadratów liczb wymiernych (tzw. problem congruum).
- J. Browkin, O wielomianach przyjmujących wartości będące liczbami pierwszymi, Delta 3/1989
Chodzi zwłaszcza o wielomiany postaci x^2 + x + p, gdzie p jest liczbą pierwszą.
- J. Rutkowski, Oo funkcjach arytmetycznych i splocie Dirichleta, Delta 3/1989
O działaniu pozwalającym elegancko dowodzić pewne własności funkcji arytmetycznych.
- A. Schinzel, Rekordy i otwarte problemy w teorii liczb, Delta 3/1991
Przegląd ważnych i elementarnie formułowalnych hipotez. Niektóre zostały już rozstrzygnięte.
- W. Guzicki, Jak rozpoznajemy liczby pierwsze?, Delta 4/1997
Testy pierwszości oparte o Małe Twierdzenie Fermata i ogólniejsze metody (np. test Millera-Rabina).
- J. Wróblewski, Twierdzenie Chińskie o resztach, czyli ciężarówką po lesie, Delta 11/1997
Nawet bardzo długą (byle wąską) ciezarówką można w wysokopiennym lesie zakręcić o 90 stopni.
- J. Browkin, Hipoteza abc, Delta 6/2000
W przybliżeniu: o tym, że suma dwóch względnie pierwszych liczb całkowitych nie może być bardzo złożona.
- M. Gałuszka, Sumy kwadratów wielomianów, Delta 2/2019
Nieujemna określoność oznacza, że wielomian przyjmuje tylko wartości nieujemne. Czy jest wtedy sumą kwadratów?
Różności
- M. Kuczma, O polu prostokąta, czyli charakterystyczne własności rożnych funkcji, Delta 1/1977
O równaniu funkcyjnym Cauchy'ego i nie tylko.
- A. Schinzel, Ułamki łańcuchowe, Delta 5/1979
Przegląd podstawowych wyników teorii ułamków łańcuchowych.
- J. Mioduszewski, Jak zobaczyć wszystkie liczby 2-adyczne, Delta 3/1980
O liczbowych, analitycznych i geometrycznych reprezentacjach.
- M. Szurek, Hipoteza Riemanna, Delta 4/1981
Związki funkcji zeta Riemanna z funkcją liczącą liczby pierwsze.
- M. Szurek, Jak rozwiązujemy równania?, Delta 9/1981
Opowiadanie o metodzie stycznych przy rozwiązywaniu równań wielomianowych.
- Homografie, Delta 12/1981
Odwzorowania płaszczyzny zespolonej zachowujące orientację i kąty.
- M. Kordos, Jak rozwiązać równanie trzeciego stopnia?, Delta 2/1987
Metoda geometryczna rozwiązywania równań stopnia 3.
- E. Puczyłowski, Norma 2-adyczna, Delta 6/1988
Kwadrat nie może być podzielony na nieparzystą liczbę trójkątów o równych polach.
- M. Bryński, Siedemnastokąt foremny, Delta 1/1989
O tym jak Gauss uzasadnił wykonalność konstrukcji siedemnastokąta foremnego.
- W. Więsław, Cyfry: arabskie czy indyjskie?, Delta 10/1998
Historia stosowania dziesiętnego zapisu pozycyjnego.
- J. Konarski, Krzywe eliptyczne, Delta 01/2001
Krzywe algebraiczne stopnia 3, nie zawierajace prostej, spelniajace dodatkowo warunek gladkości.