Geometria Algebraiczna, Seria 7

Ex. 1.

Let X be an integral noetherian scheme and let \mathcal{M} be a coherent \mathcal{O}_X -module. For $x \in X$ we write $\mathcal{M}(x) := \mathcal{M}_x \otimes_{\mathcal{O}_{X,x}} k(x)$ for the *fiber* of \mathcal{M} (it is a vector space over $k(x) = \mathcal{O}_{X,x}/m_x$). Let η be the generic point of X. A rank of \mathcal{M} is the dimension of $\mathcal{M}(\eta)$ over $k(\eta)$. Show that:

- 1. If for some non-empty open $U \subset X$, the module $\mathcal{M}(U)$ is generated over $\mathcal{O}_X(U)$ by r elements, then the rank of \mathcal{M} is $\leq r$.
- 2. There exists non-empty open $U \subset X$, such that $\mathcal{M}|_U$ is a free \mathcal{O}_U -module of rank equal to the rank of \mathcal{M} .
- 3. For every $x \in X$ the dimension of $\mathcal{M}(x)$ over k(x) is at least the rank of \mathcal{M} .

Ex. 2.

Let A be a domain and M a finitely generated A-module. Let us set X = Spec A, $\mathcal{M} = \tilde{M}$. Find the rank of \mathcal{M} and dimensions of fibers in the following cases:

1.
$$A = k[x], M = k[x]/(x).$$

2.
$$A = k[x, y], M = (x, y) \subset k[x, y].$$

Ex. 3.

Let X be a scheme and $Y \subset X$ a closed subset. Let us define a presheaf \mathcal{J}_Y by

$$\mathcal{J}_Y(U) := \{ f \in \mathcal{O}_X(U) : f(x) = 0 \text{ for } x \in U \cap Y \},\$$

where f(x) is the image of f in k(x). Show that:

- 1. \mathcal{J}_Y is quasi-coherent and it is a subsheaf of \mathcal{O}_X .
- 2. The support of $\mathcal{O}_X/\mathcal{J}_Y$ is equal to Y.

Ex. 4.

Let X be a noetherian scheme and let

$$0 \to \mathcal{M}_1 \to \mathcal{M}_2 \to \mathcal{M}_3 \to 0$$

be a short exact sequence of quasi-coherent \mathcal{O}_X -modules. Show that if two of \mathcal{M}_1 , \mathcal{M}_2 , \mathcal{M}_3 are coherent, then the third is also coherent. Does this hold if we don't assume that the modules are quasi-coherent?

Ex. 5.

Let X be a variety over an algebraically closed field k. For $f \in \mathcal{O}_X(X)$ we write

$$X_f = \{x \in X : f_x \text{ is invertible in } \mathcal{O}_{X,x}\}.$$

Let \mathcal{M} be a quasi-coherent \mathcal{O}_X -module. Show that there exists a natural isomorphism of $\mathcal{O}_X(X)$ -modules

$$\mathcal{M}(X)_f \to \mathcal{M}(X_f).$$