Exercises in Measure Theory - 11

- 1. Let μ be a complex measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.
- (i) Show that μ can be expressed as $\mu = \mu_1 \mu_2 + i(\mu_3 \mu_4)$, where μ_1, μ_2, μ_3 and μ_4 are finite measures
- (ii) Show that there is a measure ν and a complex-valued ν -measurable function φ with $|\varphi| = 1$ such that for any Borel set E,

$$\mu(E) = \int_{E} \varphi \mathrm{d}\nu.$$

- (iii) Prove that the measure ν in (ii) is unique and that φ is uniquely determined up to a set of ν -measure 0.
 - (iv) Prove that if μ satisfies $\mu(\mathbb{R}^n) = \nu(\mathbb{R}^n) = 1$, then μ is a positive measure.
- **2.** Let μ be a σ -finite positive measure on (X,M) and let $(f_n)_{n\geq 1}$ be a sequence of measurable functions which converges in μ -measure to a measurable function f. Moreover, suppose that ν is a finite positive measure on (X,M) such that $\nu << \mu$. Prove that $f_n \to f$ in ν -measure.
- **3.** Prove that if $A \subset I = [0,1]^n$ satisfies $\mu(A) < 1$ (where μ is the Lebesgue measure), then for any $\varepsilon > 0$ there is a cube $Q \subset I$ such that $\mu(A \cap Q) < \varepsilon \mu(Q)$.
- **4.** For each h > 0, let E_h be a subset of B(0,h) with the property that $\mu(E_h) \ge c\mu(B(0,h))$ for some c > 0 independent of h (μ denotes the Lebesgue measure). Show that if $f : \mathbb{R}^d \to \mathbb{C}$ is locally integrable, and x is a Lebesgue point of f, then

$$\lim_{h\to 0} \frac{1}{\mu(E_h)} \int_{x+E_h} f(y) \mathrm{d}y = f(x).$$

- **5.** Let U be an open set in \mathbb{R}^2 .
- (i) Is it true that the set of Lebesgue density points equals int *U*?
- (ii) Is it true that the set of Lebesgue density points equals int $(\operatorname{cl} U)$?
- **6.** Suppose that \mathcal{C} is the following fat Cantor set: from [0,1], remove the interval (3/8,5/8) of length 1/4; then, remove the "center" intervals of length 1/16 from [0,3/8] and [5/8,1], i.e., (5/32,7/32) and (25/32,27/32). Next, from each of the four connected parts, remove four "center" intervals of length 1/64 each; continue this procedure.

Is it true that each point which is not an endpoint of an interval thrown out during the above construction, is the Lebesgue density point of C?