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Unconstrained problems
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Variational PDEs

Consider the following second order elliptic problem

−∆u + V (x)u = f (u), u : RN → R, u(x)→ 0 as |x | → ∞.

We say that u is a weak solution, if∫
RN
∇u · ∇v + V (x)uv dx =

∫
RN

f (u)v dx

for all v .
All weak solutions are critical points of the energy (Euler-Lagrange)
functional

J (u) = 1
2

∫
RN
|∇u|2 + V (x)u2 dx −

∫
RN

F (u) dx

with F (u) :=
∫ u
0 f (s) ds.
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Variational functionals

Hence, we look for critical points of some nonlinear functional

J : X → R

defined on some function space X (in applications: some Sobolev-type
space).
First idea: look for minimizers of J ! Minimizers are critical points, so
we will find solutions....
But, if e.g. F (u) = 1

p |u|
p with some p > 2, we have

J (tu) = t2
1
2

∫
RN
|∇u|2 + V (x)u2 dx − tp

1
p

∫
RN
|u|p dx → −∞

as t →∞. The functional is not bounded from below!
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Possible approaches

Look for other type of solutions: Mountain Pass Theorem,
Palais-Smale sequences, ...

Constrained minimization: look for minimizers on appropriate
subsets of X on which the functional is bounded from below. Are
such minimizers critical points, and therefore - solutions?
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Mountain Pass Approach

One can check whether the functional has a mountain pass geometry.
Amrosetti, Rabinowitz, 1973

Then one can expect the existence of a Palais-Smale sequence:

J (un)→ c , J ′(un)→ 0,

where c > 0 is some number. Is such a sequence convergent...? Usually
not.



6/21

Mountain Pass Approach

One can check whether the functional has a mountain pass geometry.
Amrosetti, Rabinowitz, 1973

Then one can expect the existence of a Palais-Smale sequence:

J (un)→ c , J ′(un)→ 0,

where c > 0 is some number. Is such a sequence convergent...? Usually
not.



6/21

Mountain Pass Approach

One can check whether the functional has a mountain pass geometry.
Amrosetti, Rabinowitz, 1973

Then one can expect the existence of a Palais-Smale sequence:

J (un)→ c , J ′(un)→ 0,

where c > 0 is some number. Is such a sequence convergent...? Usually
not.



6/21

Mountain Pass Approach

One can check whether the functional has a mountain pass geometry.
Amrosetti, Rabinowitz, 1973

Then one can expect the existence of a Palais-Smale sequence:

J (un)→ c , J ′(un)→ 0,

where c > 0 is some number. Is such a sequence convergent...? Usually
not.



7/21

Nehari manifold approach

We look for critical points on the following constraint

N := {u ∈ X \ {0} : J ′(u)(u) = 0}.

Nehari, 1960
N contains all nontrivial critical points of J .
Properties (under reasonable assumptions, if f is sufficiently regular):

J is bounded from below on N !
N is a C1,1 manifold.
N is a natural constraint to J . Namely - if (J |N )′ (u) = 0, then
J ′(u) = 0.

Corollary: it is enough to look for minimizers of J on N .
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Nehari manifold approach

Does it work when f is not ”sufficiently” regular?

N may not be a differentiable manifold,
it makes no sense to write (J |N )′ (u) = 0.

Szulkin, Weth, 2009 There is a homeomorphism m : S → N , where S
is the unit sphere in X .

Although m is only continuous, it preserves the class of the
functional: J ◦m is of C1 class;
S is a manifold of C1,1 class;
Minimize J ◦m : S → R! One have the critical point of J ◦m.
Transform the minimizer (in fact, the minimizing sequence) back to
N through m.
It appears that this function is a critical point of J (and is a
minimizer on N ).
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Nehari manifold approach

When we find a minimizer of J on N , we gain the additional
information: the solution we find is the ground state solution (the least
energy solution) – it minimizes J among all critical points.
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Strongly indefinite problems

For strongly indefinite problems the mentioned methods have their
counterparts:

Mountain Pass Theorem ↔ Linking Theorem (Kryszewski,
Szulkin, 1998)

Nehari manifold ↔ Nehari-Pankov manifold (Pankov, 2005)
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Constrained problems
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The Schrödinger equation

We consider the following nonlinear Schrödinger wave equation

i
∂Ψ

∂t
= −∆xΨ− f (|Ψ|)Ψ, (t, x) ∈ R× RN ,

where Ψ = Ψ(t, x) is the state (wave) function. Looking for solutions of
the form (so-called standing waves)

Ψ(t, x) = e−iλtu(x),

where the so-called soliton u vanishes at infinity, leads to the equation

−∆u + λu = g(u), x ∈ RN .
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The normalized problem

We are looking for solutions to the following problem{
−∆u + λu = g(u) in RN , N ­ 3,∫
RN |u|2 dx = ρ > 0,

where ρ is prescribed and (u, λ) ∈ H1(RN)× R has to be determined.
In the time-dependent equation, the mass∫

RN
|Ψ(t, x)|2 dx is independent of t

thus

it makes sense to prescribe
∫
RN |u|2 dx instead of λ.
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Variational methods

Let us denote

S =

{
u :

∫
RN
|u|2 dx = ρ

}
.

Under suitable assumptions, solutions are critical points of the energy
functional

J (u) = 1
2

∫
RN
|∇u|2 dx −

∫
RN

G (u) dx ,

where G (u) :=
∫ u
0 g(s) ds, on the constraint S with a Lagrange

multiplier λ ∈ R.
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Variational methods

If J is bounded from below on S, one can just minimize it there. What
to do if J is not bounded from below on S?
Restrict the problem to look for radial solutions (Jeanjean, 1997;
Bartsch, de Valeriola, 2013);

Find another constraint like ”Nehari manifold”?
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−∆u + λu = g(u)

Nehari manifold:

J ′(u)(u) =
∫
RN
|∇u|2 dx + λ

∫
RN

u2 dx −
∫
RN

g(u)u dx = 0.

Pohožaev manifold (Pohožaev, 1965):∫
RN
|∇u|2 dx =

2N
N − 2

∫
RN

G (u)− λ
2
u2 dx .

Idea: take the linear combination of them to rule out λ!
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Nehari-Pohožaev manifold

M = {u ̸= 0 : M(u) = 0},

where

M(u) :=

∫
RN
|∇u|2 dx − N

2

∫
RN

H(u) dx = 0,

where H(u) := g(u)u − 2G (u).
Idea: look for solutions inM∩S.
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M is a C1-manifold,
J is bounded from below onM∩S.

One can use variational techniques to find a kind of Palais-Smale
sequence onM∩S. Is such a sequence bounded? Convergent? Is the
limit still in S? ...?
It can be done:

a mini-max approach inM based on the σ-homotopy stable family
of compact subsets ofM and some minimax principles (Bartsch,
Soave, 2018)

mountain-pass-type approach connected with the analysis of the
ground state energy map (Lu, Jeanjean, 2020)
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The new approach

Assumptions:

don’t work with radial functions;

don’t work with Palais-Smale sequences, and avoid the mini-max
approach inM involving strong topological arguments.

The new idea (B., Mederski, 2021):
work in D ∩M instead of S ∩M, where

D :=

{
u :

∫
RN
|u|2 dx ¬ ρ

}
.

Obviously S ∩M ⊂ D ∩M.
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The new approach

J is bounded from below on D ∩M;
minimizing sequences J (un)→ infD∩M J are bounded!;
one can pass to the weak limit and show that the limit is non-zero;

D is weakly closed! Hence the limit point still lies in D and is a
minimizer of J on D ∩M.
one can show the crucial inequality infS∩M J < J (v) for
v ∈ (D \ S) ∩M – the minimizer lies in S!
it seems thatM is a ”natural” constaint - the Lagrange multiplier
forM equals to 0.
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Thank you for your attention!


