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Abstract We prove that random groups in the Gromov density model, at any density,
satisfy property (FA), i.e. they do not act non-trivially on simplicial trees. This implies
that their Gromov boundaries, defined at density less than 1

2 , are Menger curves.
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1 Introduction

The density model for random groups was introduced by Gromov. We adopt the fol-
lowing language from a survey by Ollivier.
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658 F. Dahmani et al.

Definition 1.1 [7, Section 9.B], [12, Definition 7] Let Fn be the free group on n ≥ 2
generators s1, . . . , sn . For any integer L let RL ⊂ Fn be the set of reduced words of
length L in these generators.

Let 0 < d < 1. A random set of relators at density d, at length L is a �(2n−1)d L�−
tuple of elements of RL , randomly picked among all elements of RL .

A random group at density d, at length L is the group G presented by 〈S|R〉, where
S = {s1, . . . , sn} and R is a random set of relators at density d, at length L .

Let I ⊂ N+. We say that a property of R, or of G, occurs with I− overwhelming
probability (shortly, w.I –o.p. ) at density d if its probability of occurrence tends to 1
as L → ∞, for L ∈ I and fixed d. We omit writing “I−” if I = N+.

Note that the relators in RL need not be cyclically reduced. The case of another
model is discussed in Sect. 4.

Gromov proved the following.

Theorem 1.2 [7, Section 9.B], [11, Theorem 1] A random group is with overwhelming
probability

(i) trivial or Z/2Z at density greater than 1
2 ,

(ii) word-hyperbolic, with aspherical presentation complex, at density less than 1
2 .

Consequently (see e.g. [12, Section I.3.b]) with overwhelming probability at den-
sity less than 1

2 a random group is torsion-free, of cohomological dimension 2, and its
Euler characteristic is positive.

We address the following question. At density less than 1
2 , what is the boundary at

infinity of a random group G?
Since G is 2-dimensional, its boundary has topological dimension 1 ([3, Corollary

1.4]). The list of possibilities for the boundary is therefore limited in view of the
following.

Theorem 1.3 [10, Theorem 4] Let G be a hyperbolic group which does not split over
a finite or virtually cyclic subgroup, and suppose ∂∞G is 1-dimensional. Then one of
the following holds:

(1) ∂∞G is the Menger curve;
(2) ∂∞G is the Sierpiński carpet;
(3) ∂∞G is S

1 and G maps onto a Schwartz triangle group with finite kernel.

Moreover, in the case where G is torsion-free Kapovich and Kleiner prove (see
[10, Theorem 5(5)]) that ∂∞G is the Sierpiński carpet only if (G; H1, . . . , Hk) is a
3-dimensional relative Poincaré duality pair, where Hi are stabilizers of peripheral
circles of the Sierpiński carpet. But since the groups Hi are Fuchsian [10, Theorem
5(2)], this implies that the Euler characteristic of G is negative.

Since at density less than 1
2 a random group is w.o.p. torsion-free, this excludes

case (3) of Theorem 1.3. Since it has w.o.p. positive Euler characteristic, by the above
discussion this also excludes case (2) of Theorem 1.3.

In fact, at density d < 1
24 , it is known that w.o.p. the boundary of a random

group is the Menger curve. Namely, w.o.p. at density d < 1
24 , a random group satis-

fies C ′( 1
12 ) small cancellation condition (see [7, Section 9.B]). Champetier’s theorem
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Random groups do not split 659

[4, Theorem 4.18] states that this condition, together with the property that each word
of length 12 is contained as a subword in one of the relators (this holds w.o.p. for
random groups at any density), implies that the boundary is the Menger curve. But
C ′( 1

12 ) small cancellation condition fails w.o.p. for a random group at density d > 1
24

(see [7, Section 9.B]).
Nevertheless, from Żuk’s theorem [19, Theorem 4] it follows (see [12, Section

I.3.g]) that a random group G at density greater than 1
3 satisfies w.o.p. Kazhdan’s

property (T). In particular w.o.p. G does not split and by Theorem 1.3 its boundary is
the Menger curve.

We prove that this is the case at any density.

Theorem 1.4 Let 0 < d < 1
2 . Then with overwhelming probability the boundary of

a random group at density d is the Menger curve.

Theorem 1.4 is a consequence of Theorem 1.3 together with the discussion after it,
and the following, which is the main theorem of the article.

Theorem 1.5 Let 0 < d < 1. Then with overwhelming probability a random group
at density d satisfies property (FA).

Recall [18, Section I.6.1] that a group G satisfies property (FA) if each action of G
on a simplicial tree has a global fixed point. When G is finitely generated, it satisfies
property (FA) if and only if it does not admit an epimorphism onto Z and does not
split as a free product with amalgamation (see [18, Chapter I, Theorem 15]).

Here are additional corollaries to Theorem 1.5.

Corollary 1.6 Let G be a random group at any density 0 < d < 1. Then with over-
whelming probability we have the following.

(1) Out(G) is finite.
(2) For any torsion-free hyperbolic group Γ,Hom(G;Γ ) is finite up to conjugacy.

Assertion (2) is equivalent to the fact that a random system of equations at den-
sity d has w.o.p. only finitely many conjugacy classes of solutions in any torsion-free
hyperbolic group.

Assertion (1) is a well known (by experts) application of Bestvina–Paulin argument
[1,14] and Rips theory [2,6]. Assertion (2) is stronger. It follows from Sela’s theory
[17] and the fact that property (FA) is inherited by quotients. More precisely, if Γ
is hyperbolic, and Hom(G;Γ ) is infinite modulo conjugacy, then Bestvina–Paulin
argument provides an action of G on an R-tree T . This action factors through a group
L (so called Γ -limit, possibly not finitely presented), such that L � T is so-called
superstable (see [17, Lemma 1.3]). In [9,16], L has a non-trivial splitting, in contradic-
tion with property (FA). This argument extends to the case where Γ is a toral relative
hyperbolic group [8], or where Γ has torsion.
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660 F. Dahmani et al.

We end the exposition with the following.

Question 1.7 Is it true that, at any density, with overwhelming probability all finite
index subgroups of a random group satisfy property (FA)?

If d > 1
3 then this question has positive answer, since Kazhdan’s property (T)

implies property (FA) for all finite index subgroups. But already for d < 1
5 , with over-

whelming probability a random group does not have property (T) (see [13, Corollary
7.5]). Hence the answer to Question 1.7 cannot be only based on property (T). If we
fix the index of the subgroups considered, Question 1.7 might have a positive answer
justifiable in the spirit of our article. But we expect that the answer to Question 1.7 in
general is much harder. We also note that for d < 1

2 it is unknown whether a random
group has w.o.p. any proper finite index subgroup.

Our strategy of proof of Theorem 1.5 is the following. In the first part we describe
a condition which guarantees property (FA). This part is inspired by an argument of
Pride [15], who gives examples of finitely presented groups of cohomological dimen-
sion 2 with property (FA). (We learned Pride’s argument from an article by Delzant
and Papasoglu [5, Theorem 4.1].)

More precisely, we prove that certain finite collection of sets of words (the lan-
guages of what we call 1

3 -large basic automata) has the property that if we have at
least one relator from each of those sets in the presentation of a group, then this group
satisfies (FA). If we compute densities of those sets, they turn out to converge to
1, if the number of generators in the presentation converges to ∞. Hence this argu-
ment suffices to prove Corollary 2.8, which says that at each density d, if the number
of generators is sufficiently large w.r.t. d, then a random group with overwhelming
probability satisfies (FA).

In the second part we show that, to some extent, random groups with small num-
ber of generators have finite index subgroups which are quotients of random groups
with large number of generators. This part of the proof is similar to the argument
that random groups in the Gromov density model are quotients of the groups in the
triangular model (see [12, Section I.3.g]). We may then use the fact that property
(FA) is inherited by quotients and by supergroups of finite index. This proves that
with overwhelming probability random groups at any density and with any number of
generators satisfy (FA) (Theorem 1.5).

If we require in Definition 1.1 that the relators are cyclically reduced, Theorem 1.5
is still valid, although the proof requires small changes. We decided to work mainly
in the model in which we allow cyclically non-reduced words, since the proof in this
setting is slightly simpler and easier to follow. However, we provide also the proof for
the other model.

The article is organized as follows. In Sect. 2, we prove Proposition 2.6, which
provides sufficient conditions for property (FA) and yields Corollary 2.8, which is a
special case of Theorem 1.5. In Sect. 3, we use Proposition 2.6 to prove Theorem 1.5
in full generality. In Sect. 4, we give a proof of Theorem 1.5 in the model allowing
only cyclically reduced relators.

The third author would like to thank Jacek Świątkowski for the introduction into
the subject, and the people at the Institut de Mathématiques de Toulouse, where this
work was carried out, for great atmosphere and hospitality.
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2 Random groups with large number of generators

In this section, we find conditions which guarantee property (FA) (Proposition 2.6).
We use the following terminology. An alphabet S is a finite set. Let S−1 denote the

set of the formal inverses to the elements in S. Abbreviate S± = S ∪ S−1. Elements
of S± are called letters. A word over the alphabet S is a sequence of letters.

We fix, for the entire section, an alphabet S and we denote n = |S|. Below we
define a restricted version of a classical notion of an automaton whose set of states is
{∅} ∪ S±.

Definition 2.1 A basic automaton (shortly a b-automaton) over an alphabet S with
transition data {σs} is a pair (S, {σs}), where {σs}s∈{∅}∪S± is a family of subsets of
S±.

The language of a b-automaton with transition data {σs} is the set of all (nonempty)
words over S beginning with a letter in σ∅ and such that for any two consecutive letters
ss′ we have s′ ∈ σs .

We say that a b-automaton is λ-large, for some λ ∈ (0, 1), if σ∅ �= ∅ and for each
s ∈ S± we have |σs | ≥ λ2n.

Remark 2.2 (i) There are exactly 22n(2n+1) b-automata (over the fixed alphabet S
with n = |S|).

(ii) If a b-automaton is λ-large, then its language contains at least �λ2n�L−1 words
of length L and at least (�λ2n� − 1)L−1 reduced words of length L .

These estimates are useful in view of the following discussion.

Definition 2.3 Let I ⊂ N+ and let L be a set of reduced words over an alphabet
S, containing for all but finitely many L ∈ I at least ckL words of length L , where
c > 0, k > 1. Then we say that the I -growth rate of L is at least k. Similarly, if k > k′,
then we say that the I -growth rate of L is greater than k′.

Note that the value k is related to the classical notion of density dL of the set L
by the relation k = (2n − 1)dL . A well known fact in random groups asserts that a
random set of relators at density d intersects a fixed set of words of density greater
than 1 − d. In the language of the growth rate this fact amounts to the following.

Lemma 2.4 [7, Section 9.A] Let L be a set of reduced words over the alphabet S, of
the I -growth rate greater than (2n − 1)1−d . Then with I -overwhelming probability, a
random set of relators at density d intersects L.

We obtain the following corollary. Note that for fixed d and λ, its hypothesis is
satisfied for sufficiently large n.

Corollary 2.5 If �λ2n� − 1 > 0 and (2n − 1)d ≥ 2
λ

, then with overwhelming prob-
ability a random set of relators at density d intersects the languages of all λ-large
b-automata over the alphabet S.
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662 F. Dahmani et al.

Proof By Remark 2.2(ii) the N+-growth rate of the set of reduced words in the lan-
guage L of a λ-large b-automaton is at least �λ2n� − 1. Since

2(�λ2n� − 1) = (�λ2n� − 2)+ �λ2n� ≥ �λ2n� > λ(2n − 1),

we get �λ2n� − 1 > λ
2 (2n − 1), where the latter value is by hypothesis at least

(2n − 1)1−d . Hence by Lemma 2.4 a random set of relators at density d intersects L
with overwhelming probability. By Remark 2.2(i), the number of b-automata over the
fixed alphabet S depends only on n (and not on L), and we get the same conclusion
for all languages simultaneously. ��

Now we present the main result of this section.

Proposition 2.6 Let G be a group with presentation 〈S|R〉 such that R intersects the
languages of all 1

3 -large b-automata over the alphabet S. Then G satisfies (FA).

Remark 2.7 The fact that the value 1
3 of the largeness constant in the hypothesis of

Proposition 2.6 is greater than 1
4 will be surprisingly crucial in the proof of Theorem

1.5. In Sect. 4, we will need a modified version of Proposition 2.6, where the parameter
1
3 gets closer to 1

4 .

Before we give the proof of Proposition 2.6, let us deduce the following conse-
quence, which is a weak version of Theorem 1.5.

Corollary 2.8 Let 0 < d < 1 and let n satisfy (2n−1)d ≥ 6. Then with overwhelming
probability a random group with n generators at density d satisfies property (FA).

Proof Let λ = 1
3 . Since n ≥ 2, we have �λ2n� − 1 ≥ � 4

3� − 1 > 0. Moreover,
(2n − 1)d ≥ 6 = 2

λ
. By Corollary 2.5, with overwhelming probability R intersects

the languages of all 1
3 -large b-automata over the alphabet S. Hence by Proposition 2.6

we have that w.o.p. G satisfies (FA). ��
The proof of Proposition 2.6 relies on the following lemmas.
Note that it is well known that random groups have trivial abelianization, hence

they do not admit an epimorphism onto Z. However, it is convenient for us to include
the proof of the following version of this assertion.

Lemma 2.9 If G = 〈S|R〉 admits an epimorphism onto Z, then there is a 1
2 -large

b-automaton over S with language disjoint with R.

Let us adopt the convention that if s ∈ S± (resp. if w is a word over the alphabet
S), then by s (resp. w) we denote the corresponding element in the group G.

Proof If there is an epimorphism ψ : G → Z, we consider the following sets. Let

S+ = {s ∈ S± such that ψ(s) > 0},
S0 = {s ∈ S± such that ψ(s) = 0}.
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Note that |S+ ∪ S0| ≥ n and S+ is nonempty. Consider the b-automaton A over the
alphabet S with transition data σ∅ = S+ and σs = S+ ∪ S0, for s �= ∅. Let w =
si1 . . . siL be a word in the language of A. Then ψ(w) = ψ(si1)+ · · · + ψ(siL ) > 0.

In particular w �= 0, hence w /∈ R. On the other hand, the b-automaton A is 1
2 -large,

as required. ��
Before stating the next lemmas, we need the following discussion of free products

with amalgamation. If G splits as A∗C B, then we say that an element g ∈ G is written
in a reduced form g = a1b1a2b2 . . . akbk w.r.t. this splitting, if ai ∈ A, bi ∈ B, and
none of ai , bi belong to C , with the exceptions that a1, bk are allowed to be trivial
in G, and that if g ∈ C , we allow k = 1, a1 = g, b1 = e. We call nontrivial ai , bi

the terms of the reduced form. The length of g ∈ G w.r.t. the splitting A ∗C B is the
number of the terms in the reduced form of g. The length is well defined, i.e. it does
not depend on the reduced form we choose (see [18, Section I.1.2]). In particular, if g
has a reduced form with at least one term, then it is a nontrivial element of G.

If G = 〈S|R〉 splits as A ∗C B, we denote by A,B, C,D the sets of letters s ∈ S
whose corresponding s lie, respectively, in A\C, B\C,C, and outside A ∪ B. (In
particular, for s ∈ D we have that the length of s is at least 2.) We denote by α, β, γ, δ
the cardinalities of these sets. We abbreviate A± = A ∪ A−1 ⊂ S± and similarly for
B, C,D.

Lemma 2.10 If G = 〈S|R〉 splits as A∗C B, then there are α+γ
n -large and β+γ

n -large
b-automata with languages disjoint with R.

Proof For each s′ ∈ S we consider the α+γ
n -large b-automaton As′

over the alphabet
S with transition data σ∅ = {s′} and σs = A± ∪ C± for s �= ∅. We claim that at least
for one s′ ∈ S, the language of As′

is disjoint with R. Otherwise, for every s′ ∈ S
there is a relator rs′ ∈ R contained in the language of As′

. Since rs′ = 1, we obtain
s′ ∈ A. If this holds for every s′ ∈ S, we obtain G ⊂ A, contradiction. The second
construction is analogous. ��
Lemma 2.11 Assume that G = 〈S|R〉 splits as A ∗C B and the splitting is chosen
so that the sum of the lengths of all generators s ∈ G, for s ∈ S, w.r.t this splitting
is minimal. Then there is a 1

2n min{δ + β, δ + α}-large b-automaton with language
disjoint with R.

We illustrate the idea of the proof by means of the following example. Assume that
for all s ∈ S we have s ∈ D and that the first term of the reduced form of s lies in
A\C , and its last term lies lies in B\C . (One can check that in this case the mini-
mality hypothesis is satisfied.) Consider the b-automaton with all σs equal S ⊂ S±.
This b-automaton is 1

2 -large (its language consists of all “positive” words). Any word
w = si1 . . . siL in the language of this b-automaton has the following property. If we
concatenate reduced forms of all sil , we obtain w in a reduced form (there are no
cancellations). Thus w has large length and cannot be trivial. Hence w /∈ R. Thus we
have constructed a 1

2 -large b-automaton, whose language does not intersect R.
Before we give the proof of Lemma 2.11, we need the following reformulation of

the minimality hypothesis.
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Sublemma 2.12 Assume that G = 〈S|R〉 splits as A ∗C B and the splitting is chosen
so that the sum of the lengths of all generators s ∈ G, for s ∈ S, w.r.t this splitting
is minimal. Then for each a ∈ A\C we have the following. There are at most β + δ

letters s ∈ D± with the property that the reduced form of the corresponding s ∈ G
begins with a term a1 ∈ A\C satisfying a−1a1 ∈ C. Similarly, for each b ∈ B\C we
have that there are at most α + δ letters s ∈ D± with the property that the reduced
form of the corresponding s ∈ G begins with a term b1 ∈ B\C satisfying b−1b1 ∈ C.

Note that the first term of the reduced form (which in the notation of the definition
of the reduced form is a1, or b1 if a1 = e) is determined uniquely modulo multiplying
by an element from C on the right (see [18, Section I.1.2]). We will write shortly
modulo C instead of “modulo multiplying by an element from C on the right”.

Proof We prove the first assertion (the proof of the second one is analogous). Denote
by F = F(a) the set of all letters in D±, whose reduced forms begin with the term
a modulo C . Let φ = |F |. Informally, φ is the number of “generators’ extremities”
whose reduced form cancels with a−1 or a depending on whether the “extremity” is
the “beginning” or the “ending” of the generator.

Let us compute, how do lengths of generators change under conjugating by a (this
is equivalent to computing the lengths of the generators with respect to the splitting
obtained by conjugating the splitting A ∗C B by a). For s ∈ A ∪ C, the length of
a−1sa equals 0 or 1 which is the length of s. For s ∈ B, the length of a−1sa equals
3, hence increases by 2 in comparison with the length of s, which is 1. For s ∈ D we
study separately both “extremities” of s, which means that we study the first terms
of reduced forms of s for all letters s ∈ D±. Exactly φ of these first terms equal a
modulo C . The other ones are either in A\(C ∪ aC) or in B\C , and we can denote
their numbers, respectively, by φ′ and 2δ − φ − φ′. This means that conjugating by a
increases the sum of the lengths of the generators in D by −φ + (2δ − φ − φ′).

To summarize, conjugating the splitting A ∗C B by a gives us a new splitting in
which the sum of lengths of generators increases by at most 2β−φ+(2δ−φ−φ′). By
minimality hypothesis on the splitting A∗C B, we get that this number is non-negative.
Since φ′ ≥ 0, this gives φ ≤ β + δ, as required. ��
Proof of Lemma 2.11. We define the following b-automaton A over the alphabet S.

Let σ∅ = A± ∪ B± ∪ D±.
For s ∈ A± let σs be the union of B± and those letters s′ ∈ D± for which the

reduced form of s′ does not begin with s−1 modulo C . Similarly, for s ∈ B± let σs be
the union of A± and those letters s′ ∈ D± for which the reduced form of s′ does not
begin with s−1 modulo C .

Now suppose that s ∈ D±, and that s ends, in the reduced form, with a term
ak ∈ A\C . Then let σs be the union of B± and the set of letters s′ ∈ D± for which the
reduced form of s′ does not begin with a−1

k modulo C . Analogously, if s ∈ D±, and s
ends, in the reduced form, with a term bk ∈ B\C , then let σs be the union of A± and
the set of letters s′ ∈ D± for which the reduced form of s′ does not begin with b−1

k
modulo C .

Finally, for s ∈ C± let σs = S±.
Step 1. The b-automaton A is 1

2n min{δ + β, δ + α}-large.
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If s ∈ A±, then, by Sublemma 2.12, we have in D± at least 2δ− (β + δ) elements
of σs . Adding elements of B±, we get altogether at least δ+ β elements of σs . Analo-
gously, if s ∈ B±, there are at least δ + α elements in σs . The computation is similar
for s ∈ D±.

Cases where s ∈ C± or s = ∅ are obvious.
Step 2. The language of A is disjoint with R.

It is enough to prove that for any word w in the language of A, the element w ∈ G
is nontrivial. This follows from the following stronger assertion.

Claim For any word w of length k in the language of A, the length of w w.r.t. the
splitting A ∗C B is at least k and the following holds. If we denote by s the last letter
of w, we have that the last term of the reduced form of w equals the last term of the
reduced form of s modulo multiplying by an element from C on the left.

We prove the claim by induction on k. For k = 1 this is obvious. Assume we have
already proved the claim for k = l − 1 ≥ 1. Now let w be a word of length l in
the language of A ending with the pair s′s. Then the word w′ obtained from w by
removing s from the end also lies in the language of A and we can apply to it the
induction hypothesis. We get that w′ has length at least l − 1 and its reduced form
ends with the last term, say b ∈ B\C , of the reduced form of s′.

If s ∈ D±, then the length of s is at least 2 and by definition of σs′ the first term t
of the reduced form of s does not equal b−1 modulo multiplying by an element from
C on the right. Hence when we concatenate the reduced forms of w′ and s and, if
t ∈ B\C , when we substitute the pair bt with a single term in B\C , we obtain w
in a reduced form of length at least l and whose last term equals the last term of the
reduced form of s, as required.

By definition of σs′ , the only other possibility for s is that it lies in A±, i.e. that
s ∈ A\C . Thus adjoining s at the end of the reduced form of w′ gives a reduced form
ofw, which is of length at least l and whose last term equals the last (and only) term of
the reduced form of s. This proves the claim for k = l, and ends the induction proof.

This ends the proof of Lemma 2.11. ��

We now collect all pieces of information.

Proof of Proposition 2.6. Since G is finitely generated, we need to prove that G does
not admit an epimorphism onto Z and does not split as a free product with amalga-
mation. By Lemma 2.9, since 1

2 >
1
3 , we have that G does not admit an epimorphism

onto Z. It remains to prove that G does not split as a free product with amalgamation.
We prove this by contradiction.

Assume that G splits as A ∗C B and the splitting is chosen so that the sum of
the lengths of all generators s ∈ G, for s ∈ S, w.r.t. this splitting is minimal. By
Lemma 2.11 we have 1

2n min{δ + β, δ + α} < 1
3 . Assume, w.l.o.g., β ≤ α. Then

δ + β < 2n
3 .

By Lemma 2.10 we have α+γ
n < 1

3 , i.e. α + γ < n
3 . Adding up, we obtain

δ + β + α + γ < n, contradiction. ��
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3 Increasing the number of generators

In this section we demonstrate how to pass from a model where random groups have
small number of generators to a model with large number of generators, where we can
apply Proposition 2.6.

Recall that in our random model we denote the set of generators by S with n = |S|.
The density of the random set of relators is denoted by d. For our argument we need
to fix some natural number B which we will later require to be sufficiently large so
that B

√
12 < (2n − 1)d (this estimate will be used only once at the end of the proof).

Let˜S denote the set of reduced words of length B over the alphabet S. The involution
on ˜S mapping each word to its inverse does not have fixed points. Thus we can partition
˜S into Ŝ and Ŝ−1. We denote Ŝ± = Ŝ ∪ Ŝ−1 (instead of ˜S). Let n̂ be the cardinality of
Ŝ, which equals n(2n − 1)B−1.

Recall that L denotes the length of the random relators. Our proof is significantly
simpler, if we consider only those L that are divisible by B. We will always distinguish
this case and we recommend the reader to focus on this case during the first reading of
the article. For 0 ≤ P < B let IP ⊂ N+ denote the set of those L that can be written
as L = BL̂ + P .

Definition 3.1 Let r be a word of length L ∈ I0 over the alphabet S. Divide the word r
into L̂ blocks of length B. This determines a new word r̂ of length L̂ over the alphabet
Ŝ, which we call the word associated to r .

Definition 3.2 Given a set R of relators over S of equal length L ∈ IP , we define the
associated group Ĝ in the following way.

If P = 0, then we consider the set R̂ of relators associated to relators in R. We
define Ĝ to be the group 〈Ŝ|R̂〉.

If 1 ≤ P < B, then there is no natural way to associate relators over Ŝ to relators
over S. We resolve this in the following way. Suppose that r1, r2 ∈ R are two relators
of length L over S, satisfying r1 = q1v

−1 and r2 = vq2, for some word v over S of
length P . We then obtain a (possibly non-reduced) word q1q2 over S, of length 2BL̂ ,
with the property that q1q2 = 1 in G = 〈S|R〉. To this word we can associate, as
before, a relator over Ŝ, of length 2L̂ , which we denote by r̂(r1, r2). We denote by R̂
the set of all r̂(r1, r2) as above and we define Ĝ = 〈Ŝ|R̂〉.
Lemma 3.3 If Ĝ satisfies property (FA), then so does G = 〈S|R〉.
Proof Indeed, we have a natural epimorphism Ĝ → H , where H is the subgroup of
G generated by the words of length B over S. If Ĝ satisfies (FA), then its quotient H
also satisfies (FA). Moreover, since H ⊂ G is of finite (in fact at most 2n) index, we
have by [Section I.6.3.4]S that G also satisfies (FA). ��

The idea behind the remaining part of the proof is the following. Assume L = BL̂ .
Then each relator of length L̂ over the alphabet Ŝ is associated to a relator of length
L over the alphabet S. Consider the case of a model where we allow non-reduced
relators. Then one can check that the density of a set R of relators over S equals the
density of the set R̂ of associated relators over Ŝ. This means that Ĝ is a random
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group at density d in a model, where we allow non-reduced relators, with a large
number n̂ = |Ŝ| of generators. Hence in this context, Corollary 2.8 implies, in view of
Lemma 3.3, Theorem 1.5. However, we have decided not to work in this model, since
it is less standard. For some reference on it, see [11].

In our setting, we have to resolve the problem that some reduced words over Ŝ
might be associated to non-reduced words over S. The key is the following.

Lemma 3.4 Let A be a λ-large b-automaton over Ŝ. Denote by LA the set of reduced
words over the alphabet S, whose associated words lie in the language of A. Assume
that λ′ = λ− 1

2n > 0. Then the I0-growth rate of LA is at least B
√
λ′(2n − 1).

The outline of the proof is the following. We construct a b-automaton Ared over
Ŝ, whose language consists of elements of the language of A, which are associated
to reduced words over S. In other words, the language of Ared consists of words
associated to elements of LA. Then we estimate from below the growth rate of the
language of Ared, hence the growth rate of LA, in terms of n, B, and λ.

Proof Denote the transition data of A by {σŝ}. For any ŝ ∈ Ŝ±, let ρŝ ⊂ Ŝ± be the
set of ŝ′ such that the first letter of ŝ′ interpreted as a word over the alphabet S is the
inverse of the last letter of ŝ as a word over S. Observe that |ρŝ | = 1

2n 2n̂.

Let Ared be the b-automaton over the alphabet Ŝ with transition data σ red
∅ = σ∅

and σ red
ŝ = σŝ\ρŝ , for ŝ ∈ Ŝ±. We have |σ red

ŝ | ≥ |σŝ | − |ρŝ | ≥ λ2n̂ − 1
2n 2n̂ = λ′2n̂.

Hence Ared is λ′-large. By Remark 2.2(ii), its language contains at least (�λ′2n̂�)L̂−1

words of length L̂ .
Observe that the language of Ared has the following two properties. First, it is

contained in the language of A. Second, for any wordw of length L̂ in the language of
Ared, if we substitute each letter ŝ ∈ w with the corresponding word over the alphabet
S, we obtain a reduced word of length BL̂ over S.

This implies that the number of reduced words of length L = BL̂ over the alphabet
S, whose associated words lie in the language of A is bounded from below by

(⌈

λ′2n̂
⌉)L̂−1 ≥ (

λ′2n̂
) L

B −1 ≥ c
(

B
√
λ′2n̂

)L
,

for some c > 0. In other words, the I0-growth rate of LA is at least B
√
λ′2n̂. By

definition of n̂ we have

B
√
λ′2n̂ > B

√

λ′(2n − 1)B = B
√
λ′(2n − 1).

This ends the proof of Lemma 3.4. ��
We obtain some corollaries for the case where P �= 0. We recommend the reader

only interested in the case of L divisible by B to skip them and proceed directly to the
proof of Theorem 1.5.

Assume 1 ≤ P < B. We keep the setting from Lemma 3.4. Let P P
A (the “prefix

set”) denote the set of reduced words w over the alphabet S, whose length L belongs
to IP , such that the length BL̂ = L − P prefix of w lies in LA.
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Corollary 3.5 The IP -growth rate of P P
A is at least B

√
λ′(2n − 1).

Proof This follows from the fact that any word of length BL̂ in LA can be extended
to a word of length L in P P

A, and from Lemma 3.4. ��
Consider the set of reduced words of length B over the alphabet S, which begin

with s−1, for some s ∈ S±. View this set as a subset ρs of Ŝ±. For any ŝ ∈ Ŝ± let Aŝ,s

be the b-automaton over the alphabet Ŝ with transition data equal to the transition data
of A with the exception that we substitute σ∅ with σŝ\ρs . This set is nonempty since
|σŝ | ≥ λ2n̂ and |ρs | = 1

2n 2n̂. Hence Aŝ,s is λ-large.
Let v be a reduced word of length P over the alphabet S ending with a letter s. Let

S ŝ,v
A (the “suffix set”) denote the set of words w over the alphabet S, whose length L

belongs to IP , such that the length P prefix ofw equals v, and the length BL̂ = L − P
suffix of w lies in LAŝ,s . Since all words in the language of Aŝ,s start with a letter
outside ρs , we have that all words in LAŝ,s start with a letter different from s−1, and

consequently all words in S ŝ,v
A are reduced.

By Lemma 3.4 applied to Aŝ,s we obtain immediately the following.

Corollary 3.6 The IP -growth rate of S ŝ,v
A is at least B

√
λ′(2n − 1).

We are now ready for the following.

Proof of Theorem 1.5. Let R denote a random set of relators over S and G = 〈S|R〉.
We choose B sufficiently large so that we have B

√
12 < (2n−1)d . Let Ĝ = 〈Ŝ|R̂〉 be the

associated group. We want to verify, with overwhelming probability, the hypothesis of
Proposition 2.6 for Ĝ, that the set R̂ intersects the languages of all 1

3 -large b-automata

over the alphabet Ŝ. By Remark 2.2(i) it is enough to prove this for a single 1
3 -large

b-automatonA. As above, we denote by LA the set of reduced words over the alphabet
S, whose associated words lie in the language of A. By Lemma 3.4 the I0-growth rate
of LA is at least B

√
λ′(2n − 1), where (since n ≥ 2) we have

λ′ = 1

3
− 1

2n
≥ 1

3
− 1

4
= 1

12
.

(This is the point to which we refer in Remark 2.7.)
By the choice of B, the I0-growth rate of LA is at least 2n−1

B√12
> (2n − 1)1−d . Thus

we can apply Lemma 2.4 and we get that with I0-overwhelming probability there is a
relator r ∈ R ∩ LA, hence there is a relator r̂ ∈ R̂ in the language of A, as required.

We have thus proved that the hypothesis of Proposition 2.6 for the group Ĝ is
satisfied with I0-overwhelming probability. In that case, by Proposition 2.6, Ĝ satisfies
property (FA). By Lemma 3.3 this implies that G satisfies (FA). This ends the proof
of Theorem 1.5 under the assumption that we consider only L ∈ I0.

We now focus on the remaining case where L ∈ IP with P �= 0. Since the number
of the sets S ŝ,v

A (defined before Corollary 3.6) is finite and independent of L , we
get by Corollaries 3.5 and 3.6, by the choice of B, and by Lemma 2.4, that with
IP -overwhelming probability a random set of relators R contains an element in P P

A

and elements in S ŝ,v
A , for all ŝ, v.
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In that case let r1 ∈ R ∩P P
A. Denote by v−1 the word consisting of last P letters of

r1 and by ŝ the letter in Ŝ± associated to the length B block appearing before v−1 in
r1. Let r2 ∈ R ∩ S ŝ,v

A . Then the relator r̂(r1, r2) belongs to both R̂ and the language
of the b-automaton A.

Hence, with IP -overwhelming probability, the hypothesis of Proposition 2.6 is
satisfied and we can conclude that Ĝ satisfies property (FA). By Lemma 3.3 this
implies property (FA) for G and ends the proof of Theorem 1.5 in the case L ∈ IP

for P �= 0. ��

4 Cyclically reduced relators model

In this section, we explain what changes need to be introduced in the proof of Theo-
rem 1.5 in the case where we require random relators to be cyclically reduced.

Theorem 4.1 Let 0 < d < 1. Then in the model in which we allow only cyclically
reduced relators, with overwhelming probability a random group at density d satisfies
property (FA).

The problem is that the words in LA (see the proof of Theorem 1.5) might be not
cyclically reduced. Moreover, we do not have a guarantee that for a given word of
length B(L̂ − 1) in LA, we can extend this word to any word of length BL̂ in LA,
which is cyclically reduced. This spoils the counting in Lemma 3.4.

To overcome this, we need to consider slightly wider class of automata than we
have used so far, with richer languages. Shortly, we allow a different transition rule
for the last letter, a rule that allows almost half of the letters to be put on the end.

Definition 4.2 An enhanced basic automaton (shortly an e-automaton) over an alpha-
bet S is a b-automaton over S together with a final transition data {τs}, which is a
family of sets τs ⊂ S± for all s ∈ S±.

The language of an e-automaton is the set of all (nonempty) words in S beginning
with a letter in σ∅ and such that for any two consecutive letters ss′ we have that s′ ∈ σs ,
if s′ is not the last letter, and s′ ∈ τs , if s′ is the last letter.

We say that an e-automaton is (λ, ε)-large, for some λ ∈ (0, 1), ε ∈ (0, 1
2 ), if its

underlying b-automaton is λ-large, and for each s ∈ S± we have |τs | > ( 1
2 −ε)2n (the

reason the latter condition is expressed in this way will become clear in Sublemma 4.5).

Remark 4.3 If λ > 1
2 −ε, then a λ-large b-automaton can be promoted to a (λ, ε)-large

e-automaton with the same language by just putting τs = σs , for all s ∈ S±.

First we show that using this notion we can save the counting argument from
Lemma 3.4. For an e-automaton Ae over the alphabet Ŝ, we denote by Lcyc

Ae the set of
cyclically reduced words over S, whose associated words lie in the language of Ae.
We have the following analogue (and consequence) of Lemma 3.4.

Lemma 4.4 There is a constant ε0 ∈ (0, 1
2 ) such that for any ε ∈ (0, ε0] we have the

following. Let B ≥ 3. Let Ae be a (λ, ε)-large e-automaton with λ′ = λ − 1
2n > 0.

Then the I0-growth rate of Lcyc
Ae is at least B

√
λ′(2n − 1).
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Proof Let A be the underlying automaton of Ae. By Lemma 3.4, the I0-growth rate
of LA is at least B

√
λ′(2n − 1). Hence, to prove Lemma 4.4 it suffices to show that any

length B(L̂ − 1) word in LA can be extended to a length BL̂ word in Lcyc
Ae . We need

to compute the following.

Sublemma 4.5 For any alphabet S with n = |S| ≥ 2, there is a constant ε0 ∈ (0, 1
2 )

such that for any B ≥ 3 and any letters s, s′ ∈ S±, we have the following. Let 2n̂ be
the number of all reduced words of length B in S and let n̂′ be the number of reduced
words of length B over S which begin with s or end with s′. Then n̂′ ≤ ( 1

2 − ε0)2n̂.

Actually, we can take the same ε0 = 1
18 for any n.

Proof The number of reduced words which begin with s and the number of reduced
words which end with s′ equal 1

2n 2n̂, so n̂′ ≤ 1
n 2n̂. Hence if n ≥ 3, one can take

ε0 = 1
2 − 1

n . If n = 2, we need to estimate the number of words which simultaneously

begin with s and end with s′. We have at least (2n − 1)B−3(2n − 2) = n̂(2n−2)
n(2n−1)2

such
words. Hence

n̂′

2n̂
≤ 1

n
− (2n − 2)

2n(2n − 1)2
= 1

2
− 1

18
,

and we can take ε0 = 1
18 . ��

We return to the proof of Lemma 4.4. Letw be a length B(L̂−1)word in LA, and let
ŵ be the word associated to it. Denote the last letter of ŵ by ŝ. Let s, s′ denote the first
and the last letter of w. The number of reduced words of length B over the alphabet
S which start with (s′)−1 or end with s−1 is at most ( 1

2 − ε)2n̂ by Sublemma 4.5.
Hence, by definition of largeness, there is a letter in τŝ (associated to some word v
over S) without this property. Thus the word wv lies in Lcyc

Ae . This ends the proof of
Lemma 4.4. ��

Now for 1 ≤ P < B let P P
A be defined as in Sect. 3 and let (P P )

cyc
A ⊂ P P

A be the
subset of cyclically reduced words. By Lemma 3.4 we obviously have the following.

Corollary 4.6 The IP -growth rate of (P P )
cyc
A is at least B

√
λ′(2n − 1).

Let S ŝ,v
Ae be defined from Ae in the same way we defined S ŝ,v

A from A in Sect. 3. Let

(S ŝ,v)
cyc
Ae ⊂ S ŝ,v

Ae be the subset of cyclically reduced words. The following analogue
of Corollary 3.6 can be obtained from Sublemma 4.5 in the same way as Lemma 4.4.

Corollary 4.7 The IP -growth rate of (S ŝ,v)
cyc
Ae is at least B

√
λ′(2n − 1).

Now we prove the following version of Proposition 2.6. Let ε = min{ε0,
1
6 }, where

ε0 ∈ (0, 1
2 ) is the constant from Lemma 4.4 and Sublemma 4.5.

Proposition 4.8 Let G be a group with presentation 〈S|R〉 such that the set of relators
in R of length at least 3 intersects the languages of all ( 1

4 + ε
2 , ε)-large e-automata

over the alphabet S. Then G satisfies (FA).
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Before we give the proof, we need the following analogue of Lemma 2.11.

Lemma 4.9 Assume that G splits as A ∗C B and the splitting is chosen so that the
sum of the lengths of all generators s ∈ G, for s ∈ S, w.r.t this splitting is minimal.
Then there is a ( 1

2n min{δ + β, δ + α}, ε)-large e-automaton with language disjoint
with the set of relators in R of length at least 3.

Proof We take the b-automatonA described in the proof of Lemma 2.11, and promote
it to an e-automaton Ae by putting τs = σs ∪ A± ∪ B± ∪ C±.
Step 1. Ae is ( 1

2n min{δ + β, δ + α}, ε)-large.
By step 1 in the proof of Lemma 2.11, we just need to estimate |τs |. By Sub-

lemma 2.12 we have |σs ∩ D±| ≥ δ − β or |σs ∩ D±| ≥ δ − α. Since

|τs | = |σs ∩ D±| + |A± ∪ B± ∪ C±|,

we have

|τs | ≥ δ − max{α, β} + 2(α + β + γ ) ≥ α + β + γ + δ = n >

(

1

2
− ε

)

2n,

as required.
Step 2. The language of Ae is disjoint with the set of relators in R of length at least 3.

Otherwise, a word r ∈ R which is in the language of Ae either lies in the language
of the underlying b-automaton A (which is not possible by step 2 in the proof of
Lemma 2.11) or is a concatenation of a word in the language of A and a letter in
A± ∪B± ∪C±. In the latter case, r is of the formws, wherew has length at least 2 (by
the claim in the proof of Lemma 2.11) and (s)−1 has length at most 1. Contradiction.

��
Now we are ready for the following.

Proof of Proposition 4.8. We argue as in the proof of Proposition 2.6. Again we need
to prove that G does not admit an epimorphism onto Z and does not split as a free
product with amalgamation.

By Lemma 2.9, in view of Remark 4.3 (note that 1
2 >

1
2 − ε), and since 1

2 >
1
4 + ε

2
we have that G does not admit an epimorphism onto Z. It remains to prove that G
does not split as a free product with amalgamation. We prove this by contradiction.

Assume that G splits as A ∗C B and the splitting is chosen so that the sum of the
lengths of all generators s ∈ G, for s ∈ S, w.r.t this splitting is minimal.

By Lemma 4.9 we obtain 1
2n min{δ+β, δ+α} < 1

4 + ε
2 . Assume, w.l.o.g., β ≤ α.

Then δ+β
n < 1

2 + ε, hence

α + γ

n
= 1 − δ + β

n
>

1

2
− ε.

By Lemma 2.10 and Remark 4.3, there is a ( 1
2 − ε, ε)-large e-automaton whose

language does not intersect R. Hence 1
2 − ε < 1

4 + ε
2 , which is equivalent to ε > 1

6 .
This contradicts the choice of ε. ��
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We conclude with the following.

Proof of Theorem 4.1. Choose B satisfying B
√

2
ε
< (2n − 1)d , where ε is the constant

from Proposition 4.8. By Lemma 4.4 applied to λ = 1
4 + ε

2 , for any ( 1
4 + ε

2 , ε)-large

e-automaton A, the I0-growth rate of Lcyc
Ae is at least B

√
λ′(2n − 1), where λ′ =

λ− 1
2n ≥ ε

2 .
Since we chose B satisfying 1

B√
λ′ < (2n − 1)d , we have that this I0-growth rate is

greater than (2n − 1)1−d . By Lemma 2.4 (which is valid also in this model), w.I0–
o.p. the set R̂, of relators associated to a random set R of cyclically reduced rela-
tors, intersects the languages of all ( 1

4 + ε
2 )-large e-automata over the alphabet Ŝ.

Then, by Proposition 4.8, the associated group Ĝ = 〈Ŝ|R̂〉 satisfies (FA) and thus, by
Lemma 3.3, we have that G = 〈S|R〉 satisfies (FA).

It remains to consider the case of L ∈ IP , for P �= 0. This case follows from
Corollaries 4.6 and 4.7. The argument is analogous to the one in the proof of Theorem
1.5, where we use Corollaries 3.5 and 3.6, and we omit it. This ends the proof of
Theorem 4.1. ��
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