
Math. Proc. Camb. Phil. Soc. (2008), 144, 683 c© 2008 Cambridge Philosophical Society

doi:10.1017/S0305004107000989 Printed in the United Kingdom

First published online 11 February 2008

683

The fixed point theorem for simplicial nonpositive curvature

BY PIOTR PRZYTYCKI

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8,
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Abstract

We prove that for an action of a finite group G on a systolic complex X there exists a
G–invariant subcomplex of X of diameter � 5. For 7–systolic locally finite complexes we
prove there is a fixed point for the action of any finite G. This implies that free products
with amalgamation (and HNN extensions) of 7–systolic groups over finite subgroups are
also 7–systolic.

1. Introduction

Systolic complexes and systolic groups were introduced by T. Januszkiewicz and J.
Świa̧tkowski in [6] and independently by F. Haglund in [3]. Systolic complexes are simply–
connected simplicial complexes satisfying certain link conditions. Some of their properties
are very similar to the properties of CAT(0) metric spaces, therefore one calls them com-
plexes of simplicial nonpositive curvature. In particular it was shown in [6, theorem 4·1(1)],
that they are contractible. One also has the notion of convexity.

For CAT(0) spaces we have the following fixed point theorem.

THEOREM 1·1 ([1, chapter II·2, corollary 2·8]). If X is a complete CAT(0) space and G
is a finite group of isometries then the fixed–point set of G is non–empty.

Theorem 1·1 follows from an observation that for every bounded subset Y of a CAT(0)
space we can define a special point y, the circumcenter of Y , which is the center of the
(unique) minimal ball containing Y . The circumcenter y is invariant under isometries which
leave Y invariant.

For simplicial nonpositive curvature a minimal combinatorial ball containing finite set is
not unique and the distance between centers of various minimal balls can be arbitrarily large.
Thus there is no immediate way to define circumcenter.

We have found an analogue of Theorem 1·1 for actions of finite groups on systolic com-
plexes. This paper is devoted to the proof of the following theorem.

THEOREM 1·2. Let G be a finite group acting by simplicial automorphisms on a systolic
complex X. Then there exists a subcomplex Y ⊂ X which is invariant under the action of G
and whose diameter is � 5.
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This is a coarse version of the fixed point theorem. We use it to obtain in systolic setting
the property, which for CAT(0) groups is implied by Theorem 1·1.

COROLLARY 1·3. Any systolic group contains only finitely many conjugacy classes of
finite subgroups.

The class of 7–systolic complexes is a special subclass of the class of systolic com-
plexes. 7–systolic complexes are hyperbolic metric spaces ([6, theorem 2·1]) thus 7–systolic
groups (defined as the groups which act properly and cocompactly on 7–systolic complexes)
are hyperbolic. All hyperbolic groups have finitely many conjugacy classes of finite sub-
groups, so Corollary 1·3 is nothing new for 7–systolic groups. However, for locally finite
7–systolic complexes we can go further than Theorem 1·2 and obtain an honest fixed point
theorem.

THEOREM 1·4. Let G be a finite group acting by simplicial automorphisms on a locally
finite 7–systolic complex X. Then there exists a simplex σ ∈ X, which is invariant under the
action of G. (The barycenter of σ is a fixed point for G.)

We apply Theorem 1·4 to show that the class of 7–systolic complexes is closed under
certain algebraic operations.

THEOREM 1·5. Free products of 7–systolic groups amalgamated over finite subgroups
are 7–systolic. HNN extensions of 7–systolic groups over finite subgroups are 7–systolic.

The paper is organized in the following way. In Section 2 we recall the notion and prop-
erties of systolic complexes and groups. In Section 3 we introduce the notion of round com-
plexes (which are an obstruction to finding the circumcenter) and study their properties. In
Section 4 we obtain a weaker version of Theorem 1·2, which still implies Corollary 1·3.
This weaker version is more elegant in proof and it serves as a demonstration of our method,
which is fully applied in Section 5. In Section 6 we prove Theorem 1·4 and in Section 7 we
apply it to prove Theorem 1·5.

2. Systolic complexes

Let us recall (from [6]) the definition of a systolic complex and a systolic group.

Definition 2·1. A subcomplex K of a simplicial complex X is called full in X if any sim-
plex of X spanned by vertices of K is a simplex of K . The span of a subcomplex K ⊂ X is
the smallest full subcomplex of X containing K . We will denote it by span(K ). A simplicial
complex X is called flag if any set of vertices, which are pairwise connected by edges of X ,
spans a simplex in X . A simplicial complex X is called k–large, k � 4, if X is flag and there
are no embedded cycles of length <k, which are full subcomplexes of X (i.e. X is flag and
every simplicial loop of length <k and � 4 has a diagonal).

Definition 2·2. A simplicial complex X is called systolic if it is connected, simply con-
nected and links of all simplices in X are 6–large. A group � is called systolic if it acts
cocompactly and properly by simplicial automorphisms on a systolic complex X . (Properly
means X is locally finite and for each compact subcomplex K ⊂ X the set of γ ∈ � such
that γ (K )� K �� is finite.) If the links of all simplices of X are additionally k–large with
k � 6 we call it (and the group) k–systolic.
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Recall [6, proposition 1·4], that systolic complexes are themselves 6–large. In particu-
lar they are flag. Moreover, connected and simply connected full subcomplexes of systolic
(respectively k–systolic) complexes are themselves systolic (resp. k–systolic). It turns out
a simplicial complex is k–systolic with k � 6 iff it is connected, simply connected and
k–large.

Now we briefly treat the definitions and facts concerning convexity.

Definition 2·3. For every pair of subcomplexes (usually vertices) A, B in a simpli-
cial complex X denote by |A, B| (|AB| for vertices) the combinatorial distance between
A(0), B(0) in X (1), the 1–skeleton of X . A subcomplex K of a simplicial complex X is called
3–convex if it is a full subcomplex of X and for every pair of edges AB, BC such that
A, C ∈ K , |AC | = 2, we have B ∈ K . A subcomplex K of a systolic complex X is called
convex if it is connected and links of all simplices in K are 3–convex subcomplexes of links
of those simplices in X .

In [6, lemma 7·2] authors conclude that convex subcomplexes of a systolic complex X are
contractible, full and 3–convex in X . For a subcomplex Y ⊂ X , n � 0, the combinatorial
ball Bn(Y ) of radius n around Y is the span of {P ∈ X (0) : |P, Y | � n}. (Similarly Sn(Y )

= span{P ∈ X (0) : |P, Y | = n}.) If Y is convex (in particular, if Y is a simplex) then
Bn(Y ) is also convex, as proved in [6, corollary 7·5]. The intersection of a family of convex
subcomplexes is convex and we can define the convex hull of any subcomplex Y ⊂ X as the
intersection of all convex subcomplexes of X containing Y .

The paper [4] of F. Haglund and J. Świa̧tkowski contains a proof of the following propos-
ition, which will be used throughout the present paper.

PROPOSITION 2.4 ([4, proposition 4.2]). A full subcomplex Y of a systolic complex X is
convex if and only if Y (1) is geodesically convex in X (1) (i.e. if all geodesics in X (1) joining
vertices of Y lie in Y (1)).

We will need a crucial projection lemma. The residue of a simplex σ in X is the union of
all simplices in X , which contain σ .

LEMMA 2.5 ([6, lemma 7.7]). Let Y be a convex subcomplex of a systolic complex X and
let σ be a simplex in B1(Y ) disjoint with Y . Then the intersection of the residue of σ and of
the complex Y is a simplex (in particular it is nonempty).

Definition 2·6. The simplex as in Lemma 2·5 is called the projection of σ onto Y .

Now let us recall some definitions and facts concerning flat minimal surfaces in systolic
complexes proved by T. Elsner in [2].

Definition 2·7. The flat systolic plane is a systolic 2–complex obtained by equilaterally
triangulating Euclidean plane. We denote it by E

2
�. A systolic disc is a systolic triangulation

of a 2–disc and a flat disc is any systolic disc �, which can be embedded into E
2
�, such that

�(1) is embedded isometrically into 1–skeleton of E
2
�. A systolic disc � is called wide if

∂� is a full subcomplex of �. For any vertex v ∈ �(0) the defect of v (denoted by def(v))
is defined as 6 − t (v) for v � ∂�, and as 3 − t (v) for v ∈ ∂�, where t (v) is the number
of triangles in �(2) containing v. It is clear that internal vertices of a systolic disc have
nonpositive defects.

We will need the following easy and well-known fact.
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LEMMA 2·8 (Gauss–Bonnet Lemma). If � is any triangulation of a 2–disc, then
∑

v∈�(0)

def(v) = 6.

Definition 2·9. Let X be a systolic complex. Any simplicial map S : � → X , where � is
a triangulation of a 2–disc, is called a surface. A surface S is systolic, flat or wide if the disc
� satisfies the corresponding property. If S is injective on ∂� and minimal (the smallest
number of triangles in �(2)) among surfaces with the given image of ∂�, then S is called
minimal. A geodesic in �(1) is called neat if it stays out of ∂� except possibly at its ends.

LEMMA 2·10 ([2, lemma 2·5]). A systolic disc D is flat if and only if it satisfies the fol-
lowing three condition:

(i) D has no internal vertices of defect <0;
(i i) D has no boundary vertices of defect < − 1;
(i i i) any segment in ∂ D connecting vertices with defect <0 contains a vertex of defect

>0.

THEOREM 2·11 ([2, theorem 3·1]). Let X be a systolic complex. If S is a wide flat min-
imal surface in X then S maps neat geodesics isometrically into X(1).

Finally, recall a powerful observation.

LEMMA 2·12. ([7, lemma 4.4]). Every full subcomplex of a systolic complex is aspher-
ical.

3. Round complexes

Let us make some remarks to motivate the forthcoming definition.

Remark 3·1.
(1) If a finite group G acts by simplicial automorphisms on a systolic complex, then there

exists a bounded convex subcomplex Y ⊂ X that is invariant under the action of G. To see
this, take any vertex x ∈ X and take the convex hull Y of the set Gx = {g(x) : g ∈ G}. Since
the set Gx is finite, the points of Gx are at distance <d from x for some finite d. Convexity
of combinatorial balls implies that the points of Y are also at distance <d from x . The fact
that Y is invariant under the action of G is immediate.

(2) Let Y be a bounded systolic complex of diameter d (by diameter we denote the max-
imal 1–skeleton distance |V W | of vertices V, W ∈ Y (0)) and let G be a group acting on Y by
simplicial automorphisms. Then the convex subcomplex

⋂
y∈Y (0) Bd−1(y) is invariant under

the action of G and its diameter is � d − 1.
(3) This looks like a plan for getting invariant subcomplexes of arbitrarily small diameter.

However, this plan is difficult to execute, since it is unclear how to exclude the possibility
that

⋂
y∈Y (0) Bd−1(y) is empty.

Definition 3·2. A bounded systolic complex Y of diameter d is called round if
⋂

y∈Y (0)

Bd−1(y) = �.

Note that this is equivalent to the property that for each vertex V ∈ Y (0) there is a vertex
W ∈ Y (0) such that |V W | = d.
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We now start developing properties of round complexes, which will result in establishing
a bound for their diameter.

LEMMA 3·3. Let Y be a round complex of diameter d. Then there exists an edge AB ∈ Y
and vertices V, W ∈ Y such that |V B| = |W A| = d and |V A| = |W B| = d − 1.

Proof. Fix any maximal simplex σ ⊂ Y . Let k be the maximal number such that for each
simplex σ ′ ⊂ σ of dimension k there exists a vertex V ∈ Y with |V, σ ′| = d. Note that
since Y is round we have k � 0. On the other hand if we denote by n the dimension of σ we
have k < n, since if σ would be at distance d from some vertex V , then the projection of
σ onto Bd−1(V ) together with σ would form a strictly greater simplex (c.f. Lemma 2·5 and
Definition 2·6).

Take a simplex τ ⊂ σ of dimension k + 1 for which there does not exist a vertex V ∈ Y
with |V, τ | = d. Denote by A, B any two vertices of τ . Denote by τA, τB faces of codimen-
sion 1 in τ not containing A, B respectively. By definition of k there exist vertices V, W
such that |V, τA| = |W, τB | = d. This implies |V B| = |W A| = d. The choice of τ implies
|V A| = |W B| = d − 1.

Definition 3·4. A k–hexagon is a subcomplex of E
2
� obtained by taking 6k2 2–

dimensional simplices forming a regular hexagon of edge length k. A k–triangle is a sub-
complex of E

2
� obtained by taking k2 2–dimensional simplices forming a triangle of edge

length k.

LEMMA 3·5. Let k � 1 be an integer and let Y be a round complex of diameter d � 3k.
Then there exists a k–hexagon H ⊂ Y whose 1–skeleton is isometrically emdedded in the
1–skeleton Y (1).

Proof. Lemma 3·3 guarantees the existence of the vertices A, B, V, W ∈ Y at appropriate
distances.

Let V ′ ∈ Y be the furthermost vertex from V which is common for some geodesics
connecting V to A and V to W . Then let W ′ ∈ Y be the furthermost vertex from W which
is common for some geodesics connecting W to B and W to V ′. Take any loop obtained
by concatenating some 1–skeleton geodesics connecting A to V ′, V ′ to W ′ then W ′ to B
and then the edge B A. We claim that this loop does not have self–intersections. Indeed, the
segments AV ′ and BW ′ do not intersect by the choice of A, B, V, W (any geodesics AV
and BW must be disjoint, since vertices on AV are further from B than from A and vertices
on BW are nearer to B that to A). The segment V ′W ′ does not intersect AV ′ (outside of V ′)
by the choice of V ′. Finally, V ′W ′ does not intersect BW ′ (outside of W ′) by the choice of
W ′.

Now among all surfaces, whose boundary is any such piecewise geodesic loop AV ′W ′ B A
choose a surface S : � → X of minimal area. Clearly, S is a minimal surface. Moreover,
since our loop is piecewise geodesic and these geodesics are chosen arbitrarily, the defect at
every boundary vertex of � different from A, B, V ′, W ′ is at most 0. Since the segments AB
and BW ′ form a geodesic, the defect at B is at most 1, and similar argument shows the same
for A. Gauss–Bonnet Lemma 2·8 implies now that the defects at V ′ and W ′ are equal to 2,
at A, B equal to 1, at other boundary and interior vertices equal to 0. Lemma 2·10 implies
that � is flat. Analyzing possible subcomplexes of E

2
� one easily sees that � has to be a

trapezoid with sides AB, V ′W ′parallel.
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Denote d ′ = |V ′W ′| � d, so that the other edges of the trapezoid � have lengths |AV ′| =
|BW ′| = d ′ − 1, |AB| = 1. Then |V V ′| = |AV | − |AV ′| = (d − 1) − (d ′ − 1) and
similarly |W W ′| = |BW | − |BW ′| = (d − 1) − (d ′ − 1). Then the geodesic V W has length
|V V ′| + |V ′W ′| + |W ′W | = 2d − d ′ = d + (d − d ′) � d. Since the diameter of Y is d we
must have d ′ = d, which implies V = V ′ and W = W ′.

Since 3k � d, there exists a k–hexagon H ⊂ �. Let T be a subcomplex obtained from �

by deleting the two triangles containing S−1(V ) and S−1(W ). Then our surface S restricted
to T is flat, wide and minimal. Therefore, by Elsner’s Theorem 2·11, all neat geodesics in
T (1) are mapped by S onto geodesics in Y (1). If two vertices in H are not connected by a neat
geodesic in T, then they lie on a boundary segment of �, which we assumed at the beginning
to be mapped isometrically. This implies that the 1–skeleton of the k–hexagon H ⊂ T is
mapped isometrically into Y (1). Identification of H with S(H) finishes the proof.

LEMMA 3·6. Let Y be a bounded systolic complex of diameter d, and let H ⊂ Y be
a k–hexagon, whose 1–skeleton is isometrically embedded into Y (1). Let V ∈ H be the
vertex, which is the Euclidean center of H. Take m such that 2m � k. Suppose that W ∈ Y
is a vertex at distance d from V . Then there exists an m–hexagon H ′ ⊂ H, such that
H ′ ⊂ Sd(W ).

Proof. Since H (1) is isometrically embedded in Y (1), the intersection C = H�Bd−1(W ) is
convex in H (Proposition 2·4). Denote by S0, . . . , S5 the six k–triangles in H whose vertices
are V and two consecutive vertices (in the Euclidean sense) of the boundary of H . Notice
that since V is not in C , then for each i = 0, 1, 2 at least one of the opposite Si , Si+3 must
have empty intersection with C . Moreover, if C � Si � � and C � Si+2 � � (we treat
indices i = 0, . . . , 5 modulo 6) then C � Si+1 ��. Together this implies that we have an i
such that C � (Si � Si+1 � Si+2) = �. We find the m–hexagon H ′ inside the union of these
k–triangles.

COROLLARY 3·7. Let Y be a round complex of diameter d � 12. Then there exists a
vertex W and a 2–hexagon H ′ ⊂ Y , whose 1–skeleton is isometrically embedded into Y (1)

and such that H ′ ⊂ Sd(W ).

Proof. We apply Lemma 3·5 to Y and obtain a 4–hexagon H , whose 1–skeleton is iso-
metrically embedded into Y (1). Let V ∈ H be the vertex, which is the Euclidean center of
H . Since Y is round, there exists a vertex W ∈ Y such that |V W | = d. Now applying
Lemma 3·6 gives us the desired 2–hexagon H ′.

4. The main argument

LEMMA 4·1. Let W ∈ Y be a vertex in a systolic complex. Then for any sphere
Sn(W ) ⊂ Y with n � 1 there is no 2–hexagon H ⊂ Sn(W ), whose 1–skeleton is iso-
metrically embedded into Y (1).

Before we present the proof, we note that Corollary 3·7 and Lemma 4·1 immediately
imply the following.

COROLLARY 4·2. The diameter of any round complex is �11.

Proof of Lemma 4·1. We will prove the lemma by contradiction. Suppose there is a 2–
hexagon H ⊂ Sn(W ), whose 1–skeleton is isometrically embedded into Y (1). Then n � 2
(because the diameter of H is 4). Denote by A0, A1 . . . , A11 the vertices of the boundary of
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H in their natural cyclic order. Now from the projections of the edges Ai Ai+1 (we treat i’s
modulo 12) onto Bn−1(W ) choose single vertices Bi . Denote B = span(

⋃
i Bi ). Note that

for any i the vertices Bi , Bi+1 are either equal or connected by an edge (this follows from
projection Lemma 2·5).

Let us denote D1 = span(B � H), D2 = span(B � Bn−2(W )). Observe first that D1 � D2 ⊂
Y is full because there are no edges between the complexes H ⊂ Sn(W ) and Bn−2(W ).
We will use Meyer–Vietoris sequence for the pair D1, D2. Namely consider the loop
B0 B1 · · · B11 B0, which is contractible both in D1 and D2 (which is clear). These contractions
form a 2–sphere in D1 � D2 which is contractible, as D1 � D2 is aspherical (Lemma 2·12).
Thus the existence (and the form) of the homomorphism H2(D1�D2) → H1(D1�D2) in the
Meyer–Vietoris sequence implies B0 B1 · · · B11 B0 is homological to zero in D1 � D2 = B.

We will show this is not possible. Namely, we will construct a continuous mapping from
B into R

2 \ {0} such that the loop B0 B1 · · · B11 B0 is mapped to a nontrivial loop. First we
construct a map f : B(0) → R

2. Denote ek = e2π i k
12 ∈ C = R

2. For each vertex of B we
choose any i such that this vertex is equal to Bi and we map it to ei (this mapping is not
unique only if for some i � j we have Bi = Bj ). Then we extend linearly to all simplices of
B. Let 〈·, ·〉 denote the standard scalar product in R

2. Fix a simplex σ ⊂ B and suppose that
Bi , Bj ∈ σ , where i, j are the indices chosen when we defined f on B(0). Since |Bi Bj | � 1
we have |Ai A j | � 3, so |i − j | � 3 and thus 〈 f (Bi ), f (Bj )〉 � 0. If we fix i, j and consider
some other Bk ∈ σ (if k is the index chosen for Bk) then the same observation yields that
f (Bk) belongs to {v : ‖v‖2 = 1, 〈v, f (Bi)〉 � 0, 〈v, f (Bj )〉 � 0}. The convex hull of this set
omits 0. This proves that the image of f lies in R

2 \{0}. Now observe that if Bi = Bj for i �
j (now the indices are arbitrary), then the distances |Ai A j |, |Ai A j+1|, |Ai+1 A j |, |Ai+1 A j+1|
are all � 2, which implies |i − j | = 1. From this we see that the image under f of each Bi is
ei−1, ei or ei+1. It follows that the image of each edge Bi Bi+1 lies in the sector between ei−1

and ei+2. This implies that the loop B0 B1 · · · B11 B0 is mapped to a nontrivial loop. Thus we
have reached a contradiction.

Proof of Theorem 1·2 with bound �11 instead of �5. Let Y ⊂ X be a bounded con-
vex subcomplex invariant under the action of G, with the minimal possible (nonzero)
diameter d. Such subcomplexes exist, as it follows from Remark 3·1(1). Now let Y ′ =
Y �

( ⋂
y∈Y (0) Bd−1(y)

)
. As it was noticed in Remark 3·1(2), the diameter of Y ′ is <d, so

by minimality of the diameter of Y , Y ′ must be empty. Thus Y is a round complex and by
Corollary 4·2 its diameter is �11.

Remark 4·3. For any bounded convex subcomplex Y ⊂ X of a systolic complex X we
can define a sequence Y = Y0, Y1, Y2, . . . by the formula Yi+1 = Yi � (

⋂
y∈Y (0)

i
Bd(Yi )−1(y)),

where d(Yi) is the diameter of Yi . The round complex on which this sequence terminates
can be treated as the circumcenter of Y .

Proof of Corollary 1·3. We argue by contradiction. Suppose we have infinitely many con-
jugacy classes of finite subgroups represented by H1, H2, . . . ⊂ G. Denote by K ⊂ X the
compact subset such that

⋃
g∈G g(K ) = X . For all i � 1 let Ki be subcomplexes of X

with diameter �11 invariant under Hi . Find gi ∈ G such that gi (Ki) � K � �. Then the
subgroups gi Hi g

−1
i , which leave gi(Ki ) invariant, still represent different conjugacy classes.

In particular, the union
⋃

i gi Hi g
−1
i is infinite. But for all elements g of this union we have

g(B11(K )) � B11(K )��, which contradicts the properness of the action of G.
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5. Round complexes have diameter �5

In this section we give the proof of even sharper bound for diameter of round complexes.
It involves the same techniques, but takes considerably more case checking. First observe
that as a special case of Lemma 3·5 we get the following.

COROLLARY 5·1. Let Y be a round complex of diameter d � 6. Then there exists a
2–hexagon H ⊂ Y whose 1–skeleton is isometrically emdedded in the 1–skeleton Y (1).

LEMMA 5·2. Let Y be a bounded systolic complex of diameter d, and let H ⊂ Y be
a 2–hexagon, whose 1–skeleton is isometrically embedded into Y (1). Let V ∈ H be the
vertex, which is the Euclidean center of H. Suppose W ∈ Y is a vertex at distance d from
V . Denote by A0 A1 · · · A11 A0 the boundary of H. Then there exists a simplicial loop γ =
B0 B1 · · · B11 B0 in Sd−1(W ), such that each Bi is connected by an edge with Ai and Ai+1 (or
is equal to one of them) and γ is contractible in span(γ � (H � Sd(W ))).

Proof. As in the proof of Lemma 3·6 we obtain three consecutive 2–triangles in H , say
S0, S1, S2, such that S0�S1�S2 ⊂ Sd(W ). Denote the boundary vertices of H by A0, . . . , A11

so that A5, A6, . . . , A11 lie in S0 � S1 � S2. Pick vertices Bi with 5 � i � 10 from the
projections of edges Ai Ai+1 onto Bd−1(W ).

Now we will pick B4 and B11. If A0 ∈ Sd(W ), then pick B11 in the projection of A11 A0

onto Bd−1(W ). In the other case pick B11 = A0. Similarly pick B4 from the projection of
A4 A5 if A4 ∈ Sd(W ) or pick B4 = A4 in the other case.

Now we will pick B0 and B1. Denote by U the vertex in H which is the common neighbour
of A0, A2 and V . Note that since U is a neighbour of V , we have either U ∈ Sd−1(W ) or
U ∈ Sd(W ). In the first case, pick B0 = B1 = U . In the second case proceed as follows. First
we will pick B0. Consider the edge A0 A1. If it lies in Sd(W ), pick B0 from the projection of
A0 A1 onto Bd−1(W ), as usual. If not, choose B0 = A1 if A1 ∈ Sd−1(W ) and B0 = A0 in the
other case. Now we will pick B1. If A1 A2 lies in Sd(W ) then pick B1 from the projection of
A1 A2, as usual. If not, choose B1 = A2 if A2 lies in Sd−1(W ) and B1 = A1 in the other case.

Define B3, B2 exactly as B0, B1 substituting B0, B1, A0, A1 with B3, B2, A4, A3 respect-
ively in the previous construction.

Note that our choice guarantees that for each 0 � i � 11 the vertex Bi is connected by an
edge with Ai and Ai+1 (or is equal to one of them).

First we will check that B0 B11 · · · B11 B0 is a simplicial loop, i.e. that |Bi Bi+1| � 1 for all
0 � i � 11. For 4 � i � 10 this follows from the projection Lemma 2·5. Now consider
i = 11. If A0 ∈ Sd(W ) then |B11 B0| � 1 follows again from the projection Lemma 2·5. In
the other case B11 = A0, so it is also a neighbour of B0. The analogous argument works for
i = 3.

Now focus on i = 0. If U ∈ Sd−1(W ) (where U is defined as in the construction of
B0, B1), then B0 = U = B1 and we are done. If not, then if A1 ∈ Sd(W ) then both B0, B1

are neighbours of A1 in Sd−1(W ), so they are neighbours by Lemma 2·5. If A1 � Sd(W ),
then B0 = A1, so B1 is its neighbour and we are also done. The analogous argument works
for i = 1.

Finally consider i = 2. Define U ′ to be the common neighbour in H of A2, A4, V . If
both U and U ′ are in Sd−1(W ), then B1 = U, B2 = U ′ and we are done. If any of U, U ′

lies in Sd−1(W ), then A2 lies either in Sd(W ) or in Sd−1(W ). In the first case, both B1, B2

are neighbours of A2 in Sd−1(W ), so they are connected by Lemma 2·5. In the second case
B1 = A2 = B2 and we are also done.
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We have thus proved that B0 B1 · · · B11 B0 is a simplicial loop, which we now denote by
γ . We will prove that γ is contractible in span(γ � (H � Sd(W ))). First observe that if the
vertex U (defined as before) is not in H � Sd(W ) then, by the construction of B0, U = B0

lies in γ . The same holds for U ′. So S0 � S1 � S2 � U � U ′ ⊂ γ � (H � Sd(W ). This is
enough to guarantee that span(H � (γ � (H � Sd(W ))) ⊂ H is contractible. Denote this
subcomplex of H by H0.

Thus it is enough to prove that γ can be homotoped into H0 in span(γ � (H � Sd(W ))).
If γ is disjoint with H0, then γ is disjoint with H and, by the construction of γ , we have
H0 = H ⊂ Sd(W ). Hence, in this case, γ is homotopic to ∂ H in span(γ � (H � Sd(W )))

(as in Lemma 4·1) and we are done. If γ intersects H0, then let Bi Bi+1 · · · Bj denote any
segment of γ such that Bi , Bj ∈ H0 and Bl � H0 for all i < l < j (with respect to the
cyclic order). Then, by the construction of Bl , we have Al ∈ Sd for i < l < j + 1, which
implies Al ∈ H0. Thus the segment Bi Bi+1 · · · Bj is homotopic (relative its endpoints) to
the segment Bi Ai+1 Ai+2 · · · A j Bj ⊂ H0 in span(γ � (H � Sd(W ))). Thus all segments of γ

lying outside H0 can be homotoped into H0 in span(γ � (H � Sd(W ))) and we are done.

LEMMA 5·3. Every round complex has diameter �5.

Proof. Suppose, on the contrary, that Y is a round complex of diameter d � 6. Then, by
Corollary 5·1, we get a 2–hexagon H ⊂ Y whose 1–skeleton is isometrically embedded in
Y (1). Let V ∈ H be the Euclidean center of H . Since Y is round, there exists a vertex W
at distance d from V . Denote by A0 A1 · · · A11 A0 the boundary of H . Then, by Lemma 5·2,
there exists a loop γ = B0 B1 · · · B11 B0 in Sd−1(W ), such that Bi is connected by an edge
with Ai and Ai+1 and γ is contractible in span (γ � (H � Sd(W ))). Let us denote D1 =
span(γ �(H �Sd(W ))), D2 = span(γ �Bn−2(W )). Observe that D1�D2 ⊂ Y is full because
there are no edges between the vertices in Sd(W ) and Bn−2(W ). Now we can proceed word–
by–word following the proof of Lemma 4·1 and get a contradiction.

Proof of Theorem 1·2. As in the previous version of the proof in Section 4, we obtain an
invariant convex subcomplex, which is round, so by Lemma 5·3 its diameter is �5.

6. Fixed point for 7–systolic complexes

In this section we prove Theorem 1·4, the fixed point theorem for 7–systolic complexes
(c.f. Definition 2·2). Notice that we already know that round 7–systolic complexes have
diameter �2, since for diameter �3 Lemma 3·5 would produce a 1-hexagon with 1–skeleton
isometrically embedded, which is not allowed in a 7–systolic complex. We can however skip
this argument using a lemma by Osajda.

LEMMA 6·1 ([5, lemma 3·1]). Suppose |V Q| = |W Q| = n > 0 for some vertices
V, W, Q of a 7–systolic complex X. Denote by P(V ), P(W ) the projections onto Bn−1(Q)

of V, W respectively. Then either P(V ) ⊂ P(W ) or P(W ) ⊂ P(V ) (or both).

Proof of Theorem 1·4. Let Y be a minimal (nonempty) connected and simply connected
full subcomplex of X invariant under G. By Remark 3·1(1) such subcomplexes exist. Y is
round by Remark 3·1(2). Moreover, Y is 7–systolic, since it is a connected and simply con-
nected full subcomplex of a 7–systolic complex X . We will show that Y must be a simplex.
Suppose on the contrary that d = diam Y � 2.

We will show there exists a vertex V ∈ Y such that for some vertex W with |V W | = 1
we have B1(V ) � B1(W ). In other words, (excluding V and W ) the set of neighbours of W
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is strictly greater than the set of neighbours of V . One may then view V as more exposed in
Y than W .

To prove this, pick any Q ∈ Y and consider the family {P(V )}V ∈Sd (Q) of all projections
P(V ) onto Bd−1(Q) of vertices in V ∈ Sd(Q). Since Y is round this family is nonempty. By
projection Lemma 2·5 the elements of this family are simplices. Now consider a vertex V
such that P(V ) is minimal (for inclusion) simplex of the family. Take any vertex W ∈ P(V ).
We will prove that V, W have the desired property. Consider any neighbour U of V . If
U ∈ Sd−1(Q), then U ∈ P(V ), so U is a neighbour of W . If U ∈ Sd(V ), then by Lemma 6·1
and by minimality of P(V ) we get that P(V ) ⊂ P(U ), hence W ∈ P(U ) and in this case
also U is a neighbour of W . Note that if we project W onto Bd−2(Q) (recall that d � 2)
we obtain some neighbour of W , which is not a neighbour of V . This ends the proof of
B1(V )� B1(W ).

Notice that since the strict inclusion of 1–balls is a transitive relation and since Y is finite,
there exists a pair |V W | = 1, B1(V ) � B1(W ), such that no neighbour U of V satisfies
B1(U )� B1(V ) (i.e. V is a minimal element of this relation). Now consider the set V of all
vertices V ∈ Y , which have the above minimality property. For each such vertex denote by
V ′ its corresponding vertex W (this choice may be not unique). Notice that for all V ∈ V we
have V ′ � V , since V ′ cannot be minimal. We will now show that the subcomplex Y ′ ⊂ Y
spanned on the vertices Y (0) \ V is connected and simply connected. Since it is nonempty,
invariant under G and a strict subset of Y this will contradict the minimality of Y and will
finish the proof.

To prove that Y ′ is connected and simply connected, we will construct a retraction r : Y →
Y ′. First we define r on Y (0). For V ∈ Y ′(0) put r(V ) = V . For V ∈ V put r(V ) = V ′. We
will prove that r can be extended to a simplicial mapping. Since Y ′ is flag all we have to
show is that for any adjacent vertices V1, V2 ∈ Y (1) we have |r(V1)r(V2)| � 1. If V1, V2 ∈ Y ′

then this is obvious. If V1 ∈ Y ′, V2 ∈ V , then since r(V1) = V1 is a neighbour of V2, it is
also a neighbour of r(V2) and we are done. If V1, V2 ∈ V then since V1 is neighbour of V2, it
is also a neighbour of r(V2) and now since r(V2) is a neighbour of V1, it is also a neighbour
of r(V1) or equals r(V1) and we are done. Thus we can extend r to a simplicial mapping
r : Y → Y ′ fixing Y ′ and thus, since Y is connected and simply connected, so is Y ′. As
observed earlier, this contradicts the minimality of Y . Thus d � 1 and Y is a simplex.

Remark 6·2. We do not know if the assumption of Theorem 1·4 that X is locally finite
may be omitted.

7. Amalgamated free products of 7–systolic groups

We will prove Theorem 1·5 by constructing 7–systolic complexes on which the amal-
gamated products and HNN extensions act. These complexes will have a form of trees of
7–systolic complexes, as defined below, related to the Bass-Serre trees of the corresponding
products.

Definition 7·1. A tree of k–systolic complexes (k � 6) is a simplicial complex E together
with a simplicial mapping p : E → T onto a simplicial tree T satisfying the following
properties. For a vertex V ∈ T the preimage p−1(V ) ⊂ E is a k–systolic complex. For an
open edge e ∈ T the closure of the preimage p−1(e) ⊂ E is a simplex.

LEMMA 7·2. If p : E → T is a tree of k–systolic complexes, k � 6, then E is itself
k–systolic.
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Proof. To prove E is k–systolic we need to prove E is connected, simply connected and
k–large (c.f. remarks after Definition 2·2). Obviously, E is connected, simply connected and
flag, since the preimage of each vertex and the closure of the preimage of each open edge
in T is flag and contractible and the same holds for their intersections. Let γ be any loop
of length l with 4 � l < k in E . Then p(γ ) is a loop in the tree T . If p(γ ) is a single
vertex, then γ lies in a k–systolic subcomplex of E and thus has a diagonal. If p(γ ) is not
a vertex, then there exists two different edges AB, A′ B ′ ∈ γ such that p(AB) = p(A′ B ′).
This implies that A, B, A′, B ′ lie in a common simplex. Since at least three of those vertices
are different vertices of γ , we obtain a diagonal in the loop γ .

Construction 7·3. Let G, H be 7–systolic groups acting properly and cocompactly on
7–systolic complexes X, Y , respectively. Let F ⊂ G, F ⊂ H be some finite common sub-
group. Let σ ⊂ X, τ ⊂ Y be some simplices fixed under F , as guaranteed by Theorem 1·4.
We define the amalgamated complex X � Y for G �F H as follows. Take the product
space G �F H × X 
 Y and identify (ag, x) with (a, gx) and (ah, y) with (a, hy) for all
a ∈ G �F H, g ∈ G, h ∈ H, x ∈ X, y ∈ Y . Note that this is an equivalence relation. As
for now this is just a disjoint union of copies of X and Y corresponding to right cosets of
G and H in G �F H respectively. Let α be an abstract simplex spanned on σ and τ (the
join of σ and τ ). Extend the action of F on σ and τ to an affine (i.e. simplicial) action on
α. Now add extra simplicies (a, α) spanned on the pairs (a, σ ), (a, τ ) for a ∈ G �F H and
identify (a f, z) with (a, f z) for a ∈ G �F H, f ∈ F, z ∈ α. Hence we added a copy of
α for each coset aF of F in G �F H . This copy of α is glued to the copies of X and Y
corresponding to aG and aH respectively. Note that what we get is a simplicial complex,
i.e. there are no multiple edges. The only multiple edges could occur as a result of gluing
two copies of α, say (a, α), (b, α), where a, b ∈ G �F H , to the same pair of copies of X
and Y . This would imply (a, X) = (b, X) and (a, Y ) = (b, Y ). Thus b−1a ∈ G � H = F ,
hence (a, α) = (b, α). Also note that since the action of G on X and H on Y is proper, the
complex X � Y is locally finite.

Now we define the action of G �F H on X � Y . Take a, b ∈ G �F H and z ∈ X 
 Y or
z ∈ α. Define a(b, z) = (ab, z). This is a simplicial automorphism of X � Y .

Construction 7·4. Let G be a 7–systolic group acting properly and cocompactly on a 7–
systolic complex X . Let F1, F2 be some finite subgroups of G isomorphic through a fixed
isomorphism i : F1 → F2. Let σ, τ ⊂ X be some simplices fixed under F1, F2 respectively,
as guaranteed by Theorem 1·4. We define the HNN extended complex X� for G�i as follows.
Denote by t the element of G�i given in the presentation t−1 f t = i( f ), f ∈ F1. Take the
product space G �i ×X and identify (ag, x) with (a, gx) for all a ∈ G�i , g ∈ G, x ∈ X .
Let α be an abstract simplex spanned on σ and τ (treated as disjoint abstract simplices).
Extend the action of F1 on σ and τ (on which F1 acts as F2 = i(F1)) to an affine (i.e.
simplicial) action on α. Now add extra simplicies (a, α) spanned on the pairs (a, σ ), (at, τ )

for a ∈ G�i and identify (a f, z) with (a, f z) for a ∈ G�i , f ∈ F1, z ∈ α. Again what we get
is a simplicial complex. Loops cannot occur since t � G ⊂ G�i in the HNN extension and
thus the copies of X corresponding to cosets aG and atG are different. The only multiple
edges could occur as a result of gluing two copies of α, say (a, α), (b, α), where a, b ∈ G�i ,
to the same pair of copies of X . This would imply (a, X) = (b, X) and (at, Y ) = (bt, Y ).
Thus b−1a ∈ G � tGt−1 = F1, hence (a, α) = (b, α). Since the action of G on X is proper,
the complex X� we obtained is locally finite.
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Now we define the action of G�i on X�. Take a, b ∈ G�i and z ∈ X or z ∈ α. Define
a(b, z) = (ab, z). This is a simplicial automorphism of X�.

LEMMA 7·5. Consider the complexes and groups acting on them from the Construction
7·3 and the Construction 7·4. The action of G �F H on X � Y is proper and cocompact. The
action of G�i on X� is proper and cocompact.

Proof. We prove the first part of the lemma. Let K X ⊂ X and KY ⊂ Y be compact sets,
such that their translates through the elements of G, H respectively fill in the corresponding
complexes. Take K ⊂ X � Y defined as K = (1, K X ) 
 (1, KY ) 
 (1, α). The translates of
K through G �F H fill in X � Y , so the action is cocompact.

Now to prove the properness, since X � Y is locally finite, it is enough to show that vertex
stabilizers are finite. To do this, fix b ∈ G �F H, x ∈ X , and suppose that a(b, x) = (b, x)

for some a ∈ G �F H . Then there exists g ∈ G such that gx = x, a = bgb−1. Since g
determines a and since the set of such g is finite by the properness of the action of G on X ,
the stabilizer of (b, x) is finite. For x ∈ Y the argument is the same.

The second part of the lemma can be proved in the same fashion.

LEMMA 7·6. Consider the complexes from the Construction 7·3 and the Construction
7·4. Then X � Y and X� are both trees of 7–systolic complexes.

Proof. We prove the first part of the lemma. Define a graph T as follows. Let VG, VH be
right cosets of the subgroups G, H in G �F H . Let V = VG 
 VH be the set of vertices of
T . Let edges of T be right cosets aF of F in G �F H joining the vertices aG and aH . This
graph is a tree, in fact it is the Bass–Serre tree of this amalgamated free product [8, special
case of theorem 3·14]. Now define the simplicial mapping p from X � Y onto T . Define
p(a, x) = aG for x ∈ X and p(a, y) = aH for y ∈ Y . We can extend p to a simplicial
mapping. Then p(a, α) = aF , where by aF we mean the corresponding edge of T . From
this construction it follows immediately that the closures of preimages of open edges in T
are simplices (the copies of α) and that the preimages of vertices in T are 7–systolic (these
are copies of X or Y ).

For the second part, let V be the set of the right cosets of G in G�i and let edges be cosets
aF1 of F1 in G�i joining the vertices aG and atG in V . This graph T is again a tree and
we can define the simplicial mapping p : X� → T by p(a, x) = aG for a ∈ G�i , x ∈ X�
and p(a, α) = aF1. As before, the preimages of vertices are 7–systolic copies of X and the
closures of preimages of open edges are simplices.

Proof of Theorem 1·5. Groups we consider act properly and cocompactly (Lemma 7·5)
on trees of 7–systolic complexes (Lemma 7·6), which are 7–systolic by Lemma 7·2.

Remark 7·7. Using the same argument one can prove the following extension of
Theorem 1·5. Let k � 7. Free products of k–systolic groups amalgamated over finite
subgroups are k–systolic. HNN extensions of k–systolic groups over finite subgroups are
k–systolic.

Remark 7·8. Note that the Constructions 7·3 and 7·4 work also for general (6–)systolic
complexes whenever we amalgamate over groups which fix some simplices (for example if
we amalgamate over the trivial group). We do not know if in general amalgamated products
(and HNN extensions) of systolic groups over finite subgroups are systolic.
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8. Final remarks on the general systolic case

Remark 8·1. It seems that with current techniques we cannot get a sharper bound for the
diameter of round complexes. We suspect, however, that round complexes have diameter �2,
because all round complexes we know have diameter �2. An example of a round complex
of diameter 2 is the 2–triangle.

If it was true that round complexes have diameter �2, we claim we could prove there is a
fixed point for any simplicial action of a finite group on a locally finite systolic complex (and
this would imply that amalgamates of systolic groups over finite subgroups are systolic). As
a first step, we would find, like in the proof of Theorem 1·2, an invariant round complex,
whose diameter would be �2. Then we would use the following lemma that we proved
together with P. Zawiślak.

LEMMA 8·2. In every finite systolic complex Y of diameter �2 there is a simplex σ(Y ),
which is invariant under simplicial automorphisms of Y .

Note that we could have used Lemma 8·2 to prove Theorem 1·4. However, the proof
of Theorem 1·4 we presented is simpler than the proof of Lemma 8·2. Since we treat
Lemma 8·2 only as a digression, we do not enclose the proof.
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