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Abstract

This work shows that for each i ∈ ω there exists a Σ1
i -hard ω-word

language definable in Monadic Second Order Logic extended with the un-
bounding quantifier (MSO + U). This quantifier was introduced by Bo-
jańczyk to express some asymptotic properties. Since it is not hard to see
that each language expressible in MSO + U is projective, our finding solves
the topological complexity of MSO + U. The result can immediately be
transferred from ω-words to infinite labelled trees.

As a consequence of the topological hardness we note that no alter-
nating automaton with a Borel acceptance condition — or even with an
acceptance condition of a bounded projective complexity — can capture
all of MSO + U. The same holds for deterministic and nondeterministic
automata since they are special cases of alternating ones.

We also give exact topological complexities of related classes of lan-
guages recognized by nondeterministic ωB-, ωS- and ωBS-automata stud-
ied by Bojańczyk and Colcombet. Furthermore, we show that correspond-
ing alternating automata have higher topological complexity than nonde-
terministic ones — they inhabit all finite levels of the Borel hierarchy.

The paper is an extended journal version of [HST10]. The main theo-
rem of that article is strengthened here.

∗This paper has been partially supported by the Polish Ministry of Science grant no. N206
567840
†Author supported by ERC Starting Grant "Sosna" no. 239850
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Introduction
Since the seminal paper of Büchi [Büc62] the class of ω-word languages definable
in Monadic Second Order logic is of a great interest of computer scientists.
The crucial result states that the emptiness problem is decidable in that class.
Various properties of potentially infinite computations (like liveness and safety)
can be expressed in MSO and therefore automatically verified. By its closure
properties and computational tractability, the class of MSO definable ω-word
languages is traditionally referred to as ω-regular languages.

Due to [Büc62], [McN66] and [Saf88] it is known that every ω-regular lan-
guage is recognised by some deterministic Muller automaton. This entails that
on ω-words the expressive power of MSO is equal to the one of Weak Monadic
Second Order logic. The latter is a variant of MSO where set quantification is
restricted to finite subsets of the domain.

Mikołaj Bojańczyk has proposed an extension of the class of ω-regular lan-
guages which is able to express some asymptotic properties of words. The
extension was first introduced to tree languages in [Boj04], and then mainly
studied for ω-words (see e.g. [BC06], [Boj11] and [Boj10]). The idea was to
consider an additional set quantifier U, called the unbounding quantifier, which
is defined so that the formula UX.ϕ(X) is equivalent to writing:

“ϕ(X) is satisfied by arbitrarily large finite sets Xof positions”

The canonical examples of the languages that can be described using this quan-
tifier are:

LB = {an1ban2ban3b . . . | lim supni <∞} LS = {an1ban2ban3b . . . | lim inf ni =∞}

The most important result of [Boj11] states that the theory of WMSO ex-
tended with U (WMSO + U) is decidable over ω-words. The proof leads through
the construction of equivalent model of deterministic automata — so called
max-automata. It turns out that the emptiness problem for max-automata is
decidable.

Automata Models
The problem whether full MSO + U is decidable remains open. The dif-

ference versus WMSO + U is that MSO + U allows quantifiers ranging over
arbitrary subsets of the domain. Existential quantification corresponds to a
projection of an alphabet or to the nondeterminism on the automata side.

In [BC06], ωBS-automata were defined as nondeterministic automata
equipped with counters which can be incremented or reset, but not read. The
acceptance condition may require a counter to be bounded (the B-condition)
or convergent to ∞ (the S-condition). Thanks to the nondeterminism, ωBS-
automata are capable of capturing full existential quantification, therefore, they
are more expressive than max-automata. Unfortunately the class defined by
these automata is not closed under the complementation. This is why the
authors consider two restrictions of the class: ωB-automata using only the B-
condition and ωS-automata using only the S-condition. The main technical
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result of [BC06] shows that the complement of a language defined by an ωB-
automaton is accepted by an ωS-automaton, and vice versa.

Since none of the above models is closed under both boolean operations
and projections, one might want to consider alternating ωBS-automata. Such
automata are an extension of nondeterministic ones and they are closed under
boolean operations. However, the decidability of the emptiness problem for
them is still open.

Monadic Second Order Logic with U
In [HST10] the authors have given an example of a Σ1

1-complete language
definable in MSO + U. This result has already excluded all nondeterministic
automata with Borel acceptance conditions as a potential automata models for
MSO + U. After that result there was still hope that alternating ωBS-automata
are the desired model.

This paper extends the result of [HST10]. We give exact estimations of
the topological complexity of MSO + U. It turns out to be as high as possible
— there are MSO + U definable languages arbitrarily high in the projective
hierarchy.

To apply the above result to potential automata models for MSO + U we
recall the fact that the topological complexity of the language L(A) recognised
by an alternating automaton A is at most two projective levels higher then
the complexity of the acceptance condition of A. Therefore, no alternating
automata model with a fixed projective acceptance condition is able to capture
MSO + U. In particular alternating ωBS-automata are not an automata model
for MSO + U.

Of course MSO + U may still be decidable. However, most of the decid-
ability results in language theory (including ω-regular languages, regular tree
languages [Rab68], WMSO + U [Boj11], and WMSO + R [BT09]) lead through
a construction of an appropriate automata model. Results of this paper show
that there is no such model that is simple from the descriptive point of view.

Results
The following list summarises results presented in this work.

1. All languages definable by ωB, ωS, ωBS-automata are respectively in
Σ0

3,Π0
3,Σ0

4.

2. There are languages definable by ωB, ωS, ωBS-automata that are hard
for their respective classes.

3. All languages definable by alternating ωBS-automata are at the second
level of the projective hierarchy.

4. Alternating ωBS-automata recognise languages complete for arbitrarily
high finite levels of the Borel hierarchy.

5. The MSO + U logic defines languages arbitrarily high in the projective
hierarchy.
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In particular these results show that:

• Alternating ωBS-automata have strictly greater expressive power then the
boolean combinations of nondeterministic ωBS-automata.

• The MSO + U logic defines languages not recognised by alternating ωBS-
automata.

1 Basic Notions
By ω we will denote the set of natural numbers, as well as the smallest infinite
ordinal.

1.1 Logic
We assume familiarity with the Monadic Second Order Logic (MSO). Fix an
alphabet A. We denote positions of ω-words using symbols x, y, . . . and sets of
positions with symbols X,Y, . . .. For a ∈ A, the unary predicate Pa holds in all
positions of the word where an a stands. It is well known that languages that
can be described by this logic, called ω-regular languages, are exactly the sets
recognized by nondeterministic Büchi automata or, equivalently, deterministic
Muller or parity automata (see [Tho96] for a survey reference).

MSO + U allows building formulae using MSO constructs and an additional
quantifier U, called the unbounding quantifier, defined as follows. The formula
UX.ϕ(X) holds in a word w if ϕ(X) is satisfied for arbitrarily large finite sets
X of positions. Formally, UX.ϕ(X) is equivalent to:∧

n∈ω
∃X. (ϕ(X) ∧ n < |X| <∞)

For example the language LB defined in the introduction can be expressed
by the formula:

¬UX. (∀x∈X.Pa(x) ∧ ∀x<y<z. (x∈X ∧ z∈X) =⇒ y∈X)

1.2 Topology
Fix an alphabet A — any finite or countable set of letters. By A∗ we denote
the set of finite words over A, i.e. finite sequences of elements in A, whereas Aω
denotes the set of infinite sequences. For a word s ∈ A∗ ∪Aω, the restriction of
s to its first n letters is denoted by s �n. For the length of s we use a notation
|s|. If s ∈ A∗ and t ∈ A∗ ∪Aω by s · t we explicitly denote the concatenation of
s and t.

We treat Aω as a topological space. A basic open set is determined by a
prefix s ∈ A∗ and is of the form s ·Aω. Other open sets are obtained by taking
unions of basic open sets. If A is finite, this topological space is homeomorphic
(i.e. topologically isomorphic) to the Cantor space. If A is countably infinite
then the space is homeomorphic to the Baire space ωω.
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1.3 Borel and Projective Hierarchy
Let us fix a topological space X. The Borel hierarchy is defined inductively:

• Σ0
1(X) denotes the class of open subsets of X,

• Π0
1(X) denotes the class of closed subsets of X (the complements of open

sets),

for a countable ordinal α:

• Σ0
α(X) is the class of countable unions of sets from

⋃
β<α Π0

β(X),

• Π0
α(X) is the class of countable intersections of sets from

⋃
β<α Σ0

β(X).

Note that for each α the class Σ0
α(X) consists exactly of the complements of

the languages from Π0
α(X). The classes constitute a hierarchy — each class is

included in all classes with greater subindex (see Figure 1). An important fact
about the hierarchy states that the inclusions are strict. The class of Borel sets,
defined as

Bor(X) =
⋃
α<ω1

Σ0
α(X) =

⋃
α<ω1

Π0
α(X), where ω1 is the smallest uncountable ordinal,

is the least class closed under countable boolean operations that contains all
open sets. Proofs and details about the Borel hierarchy can be found e.g. in
[Sri98, Chapter 3.6]. If the space is clear from the context we will omit it and
write Bor, Σ0

α, Π0
α, etc.

The class of Borel sets is not closed under projection. Each set that is a
projection of a Borel set is called analytic. The class of analytic sets is denoted
by Σ1

1. Formally:

Σ1
1(X) = {P ⊆ X : ∃B∈Bor(ωω×X). P=π2(B)} ,

where π2 is the projection on the second coordinate. The superscript 1 means
that the class is a part of the projective hierarchy. The rest of the projective
hierarchy is defined as follows:

Π1
i consists of the complements of the sets from Σ1

i ,
Σ1
i+1 consists of the projections of the sets from Π1

i .

The sets from the class Π1
1 are called co-analytic.

The Borel hierarchy together with the projective hierarchy constitute the
so-called boldface hierarchy, see the diagram on Figure 1.

1.4 Topological Complexity
A topological complexity class C, for the needs of this paper is any of the classes
of the boldface hierarchy. Analogously to the complexity theory, we have the
notions of reductions and completeness. Let A,B be two alphabets and let
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Figure 1: The boldface hierarchy.

K ⊆ Aω and L ⊆ Bω. We say that a continuous mapping f : Aω → Bω is
a reduction of K to L if K=f−1(L). It is a simple property of continuous
mappings that if L belongs to a topological complexity class C then so does K.
The language L is called C-hard iff any set K ∈ C can be reduced to L. We
say that L is C-complete if additionally L ∈ C.

The following fact presents a standard way of using the above notions.

Fact 1.1. If C ( D are two complexity classes and L is D-hard, then L /∈ C.

Proof. Assume to the contrary that L ∈ C. Take any language K ∈ D\C. Since
L is D-hard, we can write K=f−1(L) for an appropriate continuous mapping f .
By the above observation, it implies thatK ∈ C, which gives a contradiction. �

2 Construction of Σ1
i -hard Languages

In this section we inductively construct a sequence of languages (Hi)i∈ω. We
show that for each i ∈ ω the language Hi is MSO + U definable and Σ1

i -hard.
Therefore, we prove the following theorem.

Theorem 2.1. For every i > 0 there exists an MSO + U formula ϕi such that
the language L(ϕi) is Σ1

i -hard.

In our construction we use a sequence IFi of languages of “multi-branching”
trees (i.e. trees on ωi). First, we prove that for each i the language IFi is Σ1

i -
hard. Then we inductively show that the languages can be reduced to ω-word
languages Hi definable in MSO + U. We use a function ri−1 reducing IFi−1 to
Hi−1 to construct a reduction ci of IFi to the language EPath

(
Hi−1

)
of trees

that have a branch labelled with a word w /∈ Hi−1. Then we again code such
labelled trees in ω-words.

To give some more details let us fix a finite alphabet B0 = {a, |0, b} and
define inductively Bi = Bi−1 ∪ {[i−1, |i, ]i−1}.

The inductive construction begins from step i = 1 and in each step the
picture looks as follows:

Tri ci−→ TrB+
i−1

di−→ (B+
i )ω

⊆ ⊆ ⊆

IFi EPath
(
Hi−1

)
Hi
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The construction ensures that d−1
i (Hi) = EPath

(
Hi−1

)
and

c−1
i

(
EPath

(
Hi−1

))
= IFi. The elements of the above diagram are de-

fined in following sections.
The rest of this chapter is devoted to defining elements of the above diagram

and proving their properties.

2.1 Trees
Definition 2.2. Let Tri be the set of all trees on ωi, i.e. prefix-closed subsets
of
(
ωi
)∗.

Additionally we consider labellings of the full ω-branching tree. For a given
set X an X-labelled ω-branching tree is any function t : ω∗ → X. The set of all
such trees is denoted by TrX .

Fix an order v of type ω on ω∗, such that ω∗ = {v0, v1, . . .}. Additionally
assume that for all n ∈ ω we have |vn| ≤ n. There are infinitely many vertices
of length 1 so it is possible.

Definition 2.3. Consider i > 0, a tree t ∈ Tri+1 and a finite or infinite word
w ∈ ω∗ ∪ ωω. We define the section t�w∈ Tri of the tree t as follows

t�w=
{
w′ ∈ (ωi)∗ : |w′| ≤ |w| ∧ (w �|w′| ×w′) ∈ t

}
,

where

(w0, w1, w2, . . .)× (w′0, w′1, w′2, . . .) = (w0 · w′0, w1 · w′1, w2 · w′2, . . .).

The dots in the above definition can stand for a finite or an infinite sequence.

Figure 2 presents the first two levels of a tree t on ω2 i.e. t ∈ Tr2. The
children of the root are arranged into a two dimensional grid. Given a sequence
w ∈ ω∗ ∪ ωω the section t �w∈ Tr1 is defined as the one dimensional tree
obtained by selecting particular rows from the grids of children on every level.
The position of the selected row is defined by successive values of w. For example
the children of the root in t�w come from w0’th row of the presented grid.

0 . . .

1 . . .

2 . . .

. . .

Figure 2: A multi branching tree on ω2.

Observe that if w is a finite word, t �w is a finite-depth tree — its depth is
bounded by |w|.
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Definition 2.4. For a tree t ∈ TrX and an infinite word α ∈ ωω, let

t(α) = (t(α�0), t(α�1), . . .) ∈ Xω.

Definition 2.5. We define inductively IFi ⊆ Tri.
Let IF1 be the set of all trees t ∈ Tr1 that contain an infinite branch.
Take i > 0. Let IFi+1 be a set of all trees t ∈ Tri+1 such that there exists an

infinite word α ∈ ωω such that

t�α /∈ IFi.

Fact 2.6. For each i ≥ 1 the set IFi is a Σ1
i -complete subset of Tri.

Proof. (Upper bound) IF1 is a set of Ill-Founded trees (usually denoted by IF ),
that is well known to be Σ1

1-complete (see e.g. [Kec95, Theorem 27.1]). We
proceed by induction. Assume that IFi ∈ Σ1

i . Then the set

Pi =
{

(α, t) ∈ ωω × Tri+1 : t�α /∈ IFi
}
∈ Π1

i .

Note that IFi+1 is a projection of Pi, so it is in Σ1
i+1.

(Hardness) We have to show that each Σ1
i set in ωω continuously reduces to

IFi.
As we know (see e.g. [Kec95, Exercise 14.3]), each analytic (Σ1

1) set in a
space X is a projection of a closed set in ωω × X. Recall that, by definition,
each Σ1

i+1 set is a projection of some Π1
i set. Therefore, each Σ1

i set in ωω is of
the form1:

S = {x : ∃x1 ∈ ωω.¬∃x2 ∈ ωω.¬∃x3 ∈ ωω. . . .¬∃xi ∈ ωω.(x1, x2, . . . , xi, x) ∈ FS} ,

for some closed set FS ∈ (ωω)i+1. The formula unravels to:

∃x1.∀x2.∃x3. . . .∃xi.(x1, x2, . . . , xi, x) ∈ FS if i is odd, and to:
∃x1.∀x2.∃x3. . . .∀xi.(x1, x2, . . . , xi, x) /∈ FS if i is even.

The set FS can be seen as a set in the space
(
ωi+1)ω, by simple transposition.

This space is obviously homeomorphic to the Baire space ωω. Each closed set
in the Baire space can be expressed as the set of branches of some tree (see
e.g. [Kec95, Proposition 2.4]). So there is tS ∈ Tri+1 such that:

FS =
{

(x1 × x2 × · · · × xi+1) ∈
(
ωi+1)ω : ∀n ∈ ω. (x1 �n ×x2 �n × · · · × xi+1 �n) ∈ tS

}
(2.1)

To simplify the notation, for a tree t on set X, by [t] ⊆ Xω we denote the
set of infinite branches of t. Using this notation, the above equation can be
formulated as

FS = [tS ].
1Formally, for i = 1 the formula takes the form S = {x : ∃x1 ∈ ωω .(x1, x) ∈ FS}.
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We will use the tree tS to define the needed reduction. Let f : ωω → Tri be
defined as follows:

f(x) =
{

(v1 × v2 × · · · × vi) ∈
(
ωi
)k : (v1 × v2 × · · · × vi × x�k) ∈ tS , k ∈ ω

}
To determine whether a vertex at some level k belongs to f(x) we only need to
know the first k numbers in the sequence x, so the function is continuous. To
prove that this is a reduction of S to IFi we need:

f(x) ∈ IFi ⇐⇒ x ∈ S (2.2)

Now we will take a closer look at the sets IFi. Observe that:

IFi = {t : ∃x1.∀x2.∃x3. . . .∃xi.(x1 × x2 × · · · × xi) ∈ [t]} if i is odd, and:
IFi = {t : ∃x1.∀x2.∃x3. . . .∀xi.(x1 × x2 × · · · × xi) /∈ [t]} if i is even.

So the quantifier structure is the same as in case of the above representation
of S. Therefore, to obtain (2.2), it suffices to show that for any fixed x1, x2,
. . . , xi:

(x1 × x2 × · · · × xi) ∈ [f(x)] ⇐⇒ (x1, x2, . . . , xi, x) ∈ FS .

By (2.1) it is equivalent to:

(x1 × x2 × · · · × xi) ∈ [f(x)] ⇐⇒ (x1 × x2 × · · · × xi × x) ∈ [tS ].

But the latter follows immediately from the definition of f . �

2.2 Functions ci, di

In this section we define functions ci, di. The idea is that both these functions
are continuous and 1 − 1. Their task is to present a tree t ∈ Tri as an infinite
word in such a way that an MSO + U formula can determine whether t ∈ IFi
or not.

Recall our inductively defined alphabets B0 = {a, |0, b}, Bi = Bi−1 ∪
{[i−1, |i, ]i−1} and define:

Definition 2.7. For a node u = (u1, u2, . . . , um) ∈ ω∗ of a tree, we will call the
word au1bau2b . . . baumb the address of u in the tree.

Let an i-block be a word of the form [iw|iw′]i where w ∈ {a, b}∗ and w′ ∈
(Bi \ {|i})+. We will call the word w the address of this i-block (since it will be
interpreted as an address of a node in a tree) and the word w′ the body of this
i-block.

Functions di
Take any i > 0. We encode a tree t ∈ TrB+

i−1
into a word di(t) ∈ (B+

i )ω in the
following way. Take a tree t ∈ TrB+

i−1
and a vertex vn, i.e the n’th vertex with
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respect to the order v. Let vn = (u1, u2, . . . , um) and let w0, w1, . . . , wm ∈ B+
i−1

be the list of labels of t on the path from the root to vn. Then

di(t)n := au1bau2b . . . baumb |i [i−1w0]i−1 · [i−1w1]i−1 · . . . · [i−1wm]i−1 ∈ B+
i .

Intuitively di(t)n encodes the vertex vn in t. Such an encoding consists of
two parts: the part before |i is the address of vn in the tree, while the part after
|i is intended to store labels in t on the path from the root to vn as (i−1)-blocks.
The fact that we store not only the label but also the address of the given vertex
in this coding will be crucial for the following parts of the construction.

Functions ri, ci
Now we can inductively define functions ci : Tri → TrB+

i−1
and ri = di ◦ ci.

Take a tree t ∈ Tr1 and a vertex v = (u1, u2, . . . , um) ∈ ω∗. Define c1(t) ∈
TrB+

0
by an equation

c1(t)(v) =
{
au1bau2b . . . baumb |0 a if v ∈ t,
au1bau2b . . . baumb |0 b if v /∈ t.

For i > 1 take a tree t ∈ Tri and a vertex v ∈ ω∗. Let

ci(t)(v) = (ri−1(t�v))|v| ∈ B
+
i−1.

Lemma 2.8. Functions ci, di defined above are continuous.

Proof. For di it holds by the definition. The continuity of ci can be proved
by induction together with the continuity of ri, since they cyclically depend on
each other. Function ri+1 is continuous as a composition of continuous functions,
likewise ci at each coordinate v is a composition of continuous operations: − �v,
ri−1, −|v|. �

The following lemma states that functions ri are in some sense sequential.

Lemma 2.9. For any i > 0 and any m ∈ ω:
if t1, t2 ∈ Tri agree on all v ∈ (ωi)∗ such that |v| ≤ m then

ri(t1)m = ri(t2)m.

Proof. Recall that ri(t) = di(ci(t)). First observe that for a given tree t′ ∈ TrX ,
by the definition of di, the value di(t′)m depends only on vm and the labels of
t′ on the path from the root to vm.

Now use an induction on i and consider labels of ci(t1) and ci(t2) on the
path from the root to vm. For i = 1 they depend only on t1, t2 up to the depth
of |vm|, and |vm| ≤ m, thanks to our assumption about the order v.

Take i > 1 and a vertex v 4 vm (where 4 denotes the prefix order). By the
definition ci(t)(v) = ri−1(t �v)|v|. So, by the inductive assumption, this value
also depends only on t at the depth of at most |v| ≤ |vm| ≤ m. �
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From the above lemma we conclude that the labels on each branch α ∈ ωω
in ci(t) code the tree t�α. Formally:

Lemma 2.10. For i > 1, a given tree t ∈ Tri and an infinite branch α ∈ ωω
we have:

ci(t)(α) = ri−1(t�α) ∈
(
B+
i−1
)ω
.

Proof. Take any m ∈ ω and consider v = α�m∈ ωm. By the definition

(ci(t)(α))m = ci(t)(α�m) = (ri−1(t�v))m .

Since t �v and t �α agree on all vertices up to the depth m, by Lemma 2.9, we
have

(ri−1(t�v))m = (ri−1(t�α))m .

�

2.3 Languages Hi

In this section we define MSO + U formulae ϕi. The i’th formula ϕi expresses
properties of infinite words over Bi+1.

All the above work is done in the spaces (B+
i )ω. Since we want to build

MSO + U formulae over finite signatures, we need to work with finite alphabets.
To achieve this we will use one additional encoding which is simply a kind of
concatenation.

For i ≥ 0 consider ji : (B+
i )ω → Bωi+1 defined as follows

ji(w0, w1, . . .) = [iw0]i · [iw1]i · . . .

Of course functions ji defined above are continuous and 1− 1.
Recall that the address of an i-block is supposed to represent a node of a tree

(see Definition 2.7). We say that such an i-block (or its address) corresponds to
this node.

We will call a set A of addresses of nodes:

deep if the number of letters b in elements of A is unbounded,

thin if for any set P of some prefixes of elements of A such that the number
of letters b in elements of P is bounded, the lengths of sequences a∗ in
elements of P are bounded.

11



Figure 3: An illustration of the thin property — any section of finite depth
contains only finitely many prefixes of branches in A.

The following remark provides a way of using the above properties.

Remark 2.11. A tree t ⊆ ω∗ has an infinite branch if and only if there is a
thin and deep set A of addresses of some nodes in t.

Proof. First assume that t has an infinite branch α ∈ ωω. Take as A the set
of addresses of vertices in {α�n: n ∈ ω}. Of course such A is deep. We show
that A is thin. Consider any set P of prefixes of addresses in A, such that the
number of letters b in elements of P is bounded by some number k ∈ ω. In that
case, lengths of sequences a∗ in P are bounded by maxn≤k αn: in each element
of A the sequence a∗ before the n’th letter b has length αn−1.

Now take a thin and deep set A of addresses of some nodes of t. We identify
elements of A with those nodes, i.e. A ⊆ t. Consider as T the closure of A
under prefixes, i.e.:

T = {v ∈ ω∗ : ∃v′∈A v 4 v′} .

Then T is an infinite tree, because A is deep. Additionally, at each level
k ∈ ω, there are only finitely many vertices in T ∩ωk, by thinness of A. So T is
a finitely branching tree. Therefore, by König’s Lemma, T contains an infinite
branch α. But T ⊆ t, so α is also an infinite branch of t. �

Formulae
Observe that both properties deepness and thinness of a set of addresses of

a sequence of i-blocks can be expressed in MSO + U. It is because in those
definitions we only use regular properties and properties like the number of
letters b is unbounded or the length of sequences a∗ is bounded.

We now define a series of MSO + U formulae ϕi. It is easy to see that we
can express in MSO that a given word α ∈ (Bi+1)ω is of the form b0 ·b1 · . . . such
that each bn is an i-block. We implicitly assume that all formulae ϕi express it.

Let ϕ0 additionally express that a given word is not of the form

([0 (a∗b)∗ |0 a ]0)ω .

12



For i > 0, let ϕi express the following property:

There exists a set G containing only whole i-blocks such that:

1. the set of addresses of the i-blocks of G is deep,
2. the set of addresses of the i-blocks of G is thin,
3. the bodies of the i-blocks of G, when concatenated, form an

infinite word that satisfies ¬ϕi−1.

Take i ≥ 0. Since L(ϕi) ⊆ Bωi+1, we can define

Hi = j−1
i (L(ϕi)) ⊆ (B+

i )ω.

Languages Hi defined above are (up to the j operator) MSO + U definable.
We will use one important property of languages Hi.

Definition 2.12. A language L ⊆ Xω is monotone if for any α, β ∈ Xω

{αn : n ∈ ω} ⊆ {βn : n ∈ ω} =⇒ (α ∈ L⇒ β ∈ L) .

Note, that belonging to a monotone language depends only on the set of
letters occurring in a word, namely

Fact 2.13. If L ⊆ Xω is a monotone language, then for any α, β ∈ Xω the
following holds

{αn : n ∈ ω} = {βn : n ∈ ω} =⇒ (α ∈ L⇔ β ∈ L) .

Lemma 2.14. Languages Hi ⊆ (B+
i )ω are monotone.

Proof. For i = 0 it is obvious. For i > 0 formula ϕi expresses that there exists
a set of i-blocks such that this set satisfies some additional property. Moreover,
it does not matter in what order the i-blocks appear. �

2.4 Reductions
In this section we show that ri is a reduction of IFi to Hi. We do it in two
steps.

Definition 2.15. For L ⊆ Xω let EPath (L) ⊆ TrX be a set of such trees t that
there exists an infinite word α ∈ ωω such that

t(α) ∈ L.

In other words EPath (L) is the set of trees that contain an infinite branch
such that labels on this branch form a word in L.

Lemma 2.16. For i > 0 the function di : TrB+
i−1
→ (B+

i )ω is a reduction of
EPath

(
Hi−1

)
to Hi.

13



Proof. We have to prove that for any t ∈ TrB+
i

t ∈ EPath
(
Hi−1

)
⇐⇒ di(t) ∈ Hi.

First assume that t ∈ EPath
(
Hi−1

)
. Let α ∈ ωω be a branch such that

t(α) /∈ Hi−1. Let w = ji(di(t)) ∈ (Bi+1)ω. We show that w |= ϕi. Take as
G the set containing i-blocks corresponding to vertices of α. Then the set of
addresses of i-blocks of G is obviously thin and deep (one vertex at each level
of the tree). Additionally, the set of (i−1)-blocks occurring in bodies of i-blocks
in G is exactly the set

{[i−1 · (t(α))n · ]i−1 : n ∈ ω} .

Language Hi−1 is monotone, so, by Fact 2.13, since t(α) /∈ Hi−1, the set G
satisfies point 3 in the definition of ϕi.

The other direction is a little more tricky. Assume that ji(di(t)) |= ϕi. Let
G be as in the definition of ϕi. Then the set of addresses of i-blocks of G is
deep and thin. Let B ⊆ ω∗ be the set of nodes corresponding to these addresses
and let T be the closure of B under prefixes, i.e.:

T = {v ∈ ω∗ : ∃v′∈B v 4 v′} .

As in Remark 2.11, there exists an infinite branch α ∈ ωω of T . Observe
that the set

{[i−1 · (t(α))n · ]i−1 : n ∈ ω}
is contained in the set of (i−1)-blocks in bodies of i-blocks in G. Because of the
monotonicity of Hi−1 and point 3 in the definition of ϕi, t(α) /∈ Hi−1. �

Lemma 2.17. For i > 0 the function ci is a reduction of IFi to EPath
(
Hi−1

)
.

Proof. Take i = 1. A tree t ∈ Tr1 contains an infinite branch if and only if
c1(t) contains a branch labelled by words of the form (a∗b)∗|0a if and only if
c1(t) ∈ EPath

(
H0
)
.

Induction step: i > 1. Take a tree t ∈ Tri. The following conditions are
equivalent:

t ∈ IFi
∃α∈ωω t�α /∈ IFi−1 by the definition of IFi
∃α∈ωω ci−1(t�α) /∈ EPath

(
Hi−2

)
by the inductive assumption

∃α∈ωω ri−1(t�α) /∈ Hi−1 by Lemma 2.16
∃α∈ωω ci(t)(α) /∈ Hi−1 by Lemma 2.10

ci(t) ∈ EPath
(
Hi−1

)
by the definition of EPath (L).

�

We are now ready to prove Theorem 2.1.
Proof of Theorem 2.1 Take i ∈ ω and ϕi as defined above. Functions
ci, di, ji are continuous by Lemma 2.8 and the definition of ji. Moreover, using
the definition of Hi and Lemmas 2.17, 2.16 their composition reduces IFi to
L(ϕi). Thanks to Fact 2.6, the set IFi is Σ1

i -hard. �
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3 Nondeterministic ωBS-automata
In this section we give exact estimations on the topological complexity of ωBS-,
ωB- and ωS-regular languages.

First we present ωBS-automata as described in [BC06,Boj10]. They define a
strict subclass of MSO + U, but, as far as we know, it is the greatest considered
subclass of MSO + U with decidable emptiness.

An ωBS-automaton A, as other nondeterministic finite automata, has a finite
input alphabet A, a finite set Q of states and an initial state qI . Apart from that
it is equipped with a finite set Γ of counters. The counters can only be updated
and cannot be read during the run. They are used by the acceptance condition.
A transition of the automaton is a transformation of states, as in standard
NFA’s, and additionally a finite sequence of counter updates. A counter update
can be either an increment or a reset of a counter c ∈ Γ.

The value of a counter c is initially set to 0 and is incremented or reset
according to the transitions in a run. For c ∈ Γ and a run ρ we define a
sequence valρ(c), where valρ(c)i is the value of counter c right before its i-th
reset in the run ρ. Note that if the counter c is reset only finitely many times
then the sequence valρ(c) is finite.

The acceptance condition of an ωBS-automaton is a boolean combination of
constraints that can be of one of the forms:

lim sup
i

valρ(c)i <∞ lim inf
i

valρ(c)i =∞

The first constraint is called the B-condition (bounded), the second — the
S-condition (strongly unbounded). In order that lim inf and lim sup make sense,
the constraints implicitly require the corresponding sequences to be infinite.

It is a simple observation that the negation of a B-condition can be simulated
using an S-condition and nondeterminism, and vice versa. Thanks to this fact
we can consider automata with acceptance conditions that are positive boolean
combinations of S- and B-conditions, without loss of expressive power.

We will use the notation B(c) for the B-condition and S(c) for the S-
condition imposed on a counter c.

If the acceptance condition of an automaton is a positive boolean combina-
tion of B-conditions, the automaton is called an ωB-automaton. We similarly
define ωS-automata.

Languages recognized by ωBS-automata (respectively ωB-automata, ωS-
automata) are called ωBS-regular (respectively ωB-regular, ωS-regular). An
important result of [BC06] is that the complement of an ωB-regular language is
an ωS-regular language, and vice versa. The result is much more involved than
the above remark of the duality of B-condition and S-condition, because, by
the straightforward reduction, while negating a nondeterministic automaton we
obtain a co-nondeterministic (universal) one, not a nondeterministic one. Both
the classes are extensions of the class of ω-regular languages since the Büchi
condition can be simulated by either a B-condition or an S-condition.
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Example 3.1. The language LS defined in the introduction can be recognized
by an ωS-automaton. The automaton has one state and uses one counter that
is increased when reading a letter a and is reset after each b. The acceptance
condition is simply an S-condition on the only counter.

3.1 Complexity of ωB- and ωS-regular Languages
Theorem 3.2. Each ωB-regular language is in Σ0

3.

Proof. Fix an ωB-automaton A recognizing a language L, and let us first assume
that its accepting condition is a conjunction of B-conditions, i.e. is of the form:∧

c∈ΓB

B(c)

Each of the considered counters is bounded iff there is a common bound k
for all of them. Therefore L can be defined as:

L =
{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is infinite but bounded
}

=
⋃
k

{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is infinite and bounded by k
}︸ ︷︷ ︸

Lk

,

where the quantification is over the set of all runs of A on w.
It is easy to see that for a fixed k, Lk can be recognized by a nondeterministic

Büchi automaton. We simply store counter values in states and do not allow
them to be incremented above k. The acceptance condition requires each of the
counters c ∈ ΓB to be reset infinitely often. Hence Lk is ω-regular. Since each
ω-regular language is a boolean combination of Σ0

2 sets and L is a countable
union of such sets, L ∈ Σ0

3.
In the general form, the acceptance condition of an ωB-automaton is a pos-

itive boolean combination of B-conditions. We can write such a condition in
disjunctive normal form (DNF). The language accepted by this automaton is a
union of languages corresponding to each disjunct. Hence it is in Σ0

3. �

Thanks to the complementation result of [BC06], we have:

Corollary 3.3. Each ωS-regular language is in Π0
3.

The complexity bounds given by Theorem 3.2 and Corollary 3.3 are tight.

Fact 3.4. There is a Σ0
3-complete set that is ωB-regular and a Π0

3-complete set
that is ωS-regular.

Proof. Because ωB-regular languages are complements of ωS-regular languages,
it suffices to show only one of the claims.

We recall that the language LS is in Π0
3 and ωS-regular. Π0

3-hardness of LS
follows from Π0

3-hardness of set C3 from Exercise 23.2 in [Kec95] via an obvious
reduction. �
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3.2 Complexity of ωBS-regular Languages
In this section we show that the reasoning presented in the previous section can
be lifted to the case of automata that can use both S- and B-conditions. This
important observation is by Szymon Toruńczyk.

Theorem 3.5. Each ωBS-regular language is in Σ0
4.

Proof. The proof, on one hand, will use the result of Corollary 3.3 and, on the
other hand, will repeat a reasoning similar to the one from the proof of Theorem
3.2.

Let us fix an ωBS-regular language L and an automaton A recognizing it.
First assume that an acceptance condition of A is of the form:∧

c∈ΓB

B(c) ∧
∧
c∈ΓS

S(c)

The language L can then be defined by:

L =
⋃
k

{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is infinite and bounded by k∧
c∈ΓS

valρ(c) converges to ∞

}
︸ ︷︷ ︸

Lk

Note that each Lk language is ωS-regular, hence, by Corollary 3.3, it is in Π0
3.

Therefore L, as a countable union of such languages, is in Σ0
4.

A general acceptance condition can be written in disjunctive normal form
(DNF). Again, the language accepted by such an automaton is a union of lan-
guages corresponding to each disjunct, so it is in Σ0

4. �

Now we show that the bound is tight. For that we consider the language,
that was used in [BC06, Corollary 2.8] to show that the class of ωBS-regular
languages is not closed under complements. Let

G =

an1ban2b . . . :
the sequence n1, n2, . . . can be partitioned into
a (possibly finite) bounded subsequence and
a subsequence that is empty or tends to ∞


The following fact is presented as an example in [TL93, page 595]. It can be

shown using language S4 from Exercise 23.6 in [Kec95].

Fact 3.6. The language G is Σ0
4-complete.

Now it suffices to note that the language G is ωBS-regular. It is proven
in [BC06] (by showing an appropriate ωBS-regular expression), but it is straight-
forward to construct a nondeterministic ωBS-automaton recognizing it.
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4 Alternating ωBS-automata
On the way towards finding a model of automata for the logic MSO + U, alter-
nating ωBS -automata were considered. Thanks to Theorem 2.1 we know that
the model is too weak (this is discussed in detail in Chapter 5), but we give here
a lower bound for the topological complexity of alternating ωBS -automata.

Alternating ωBS-automata are defined similarly as nondeterministic ωBS-
automata. The difference is that the state space Q is partitioned into Q∀ (uni-
versal states) and Q∃ (existential states). We use standard game semantics for
such automata. For a given alternating automaton A and a word w ∈ Aω we
define a two-player game. A play in this game starts in the initial state of the
automaton and in the first position of the word and proceeds by applying tran-
sitions of the automaton on the word w consistent with the current state and
the letter in the current position in the word. Player ∀ (respectively ∃) chooses
transitions when the automaton is in a state from Q∀ (respectively Q∃). Finally
the play produces an infinite sequence of transitions consistent with consecutive
letters of the word. Such a play is winning for ∃ if it satisfies the acceptance
ωBS-condition of A— a boolean combination of B- and S-conditions. The word
w is accepted by the automaton iff Player ∃ has a winning strategy in the above
game.

4.1 Languages Complete for the Classes Π0
2n

We will now present examples of languages of infinite words complete for the
Borel classes Π0

2n, which are recognized by alternating ωBS-automata.
To make proofs easier, we will work with the spaces of sequences of vectors

of numbers Nn = (ωn)ω. An easy embedding, described below, will transfer the
results into the space of infinite words. For n = 0, the above definition gives
the space of infinite sequences of empty tuples, i.e. N0 ' {ω}.

Let us fix an alphabet A = {a, b, c}. We encode a sequence of vec-
tors in the space Aω. Each vector (zn, zn−1, . . . , z1) is mapped to the word
aznbazn−1b . . . az1c, and the codes of consecutive vectors are concatenated. We
will call the embedding defined this way Wn : Nn → Aω.

We will use the following notations to easily operate on sequences of vectors.

• For η ∈ Nn and m ∈ ω, let η �=m be a subsequence of η consisting of
those vectors that have value m at the first coordinate. We will also use
the notation η �∈S to restrict to set S of values at the first coordinate.

• Let π1̄ : Nn → Nn−1 be the projection that cuts off the first coordinate
from each vector in a given sequence.

Definition 4.1. For n > 0 we define

Ln =
{
η ∈ Nn : ∃∞mn

∃∞mn−1
. . . ∃∞m1

∃∞x η(x) = (mn,mn−1, . . . ,m1)
}
,

where ∃∞ stands for “exists infinitely many”. Additionally, let L0 = {ω} = N0.
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The following fact describes the languages Ln in an inductive fashion.

Fact 4.2. For n > 0, a sequence η ∈ Nn belongs to Ln iff there exist infinitely
many m ∈ ω such that η �=m is an infinite sequence and π1̄ (η �=m) ∈ Ln−1.

We note some important properties of languages Ln:

• monotonicity: If η ∈ Nn and ν is a subsequence of η, then ν ∈ Ln =⇒
η ∈ Ln,

• prefix independence: For η ∈ Nn and ν ∈ (ωn)∗, η ∈ Ln iff νη ∈ Ln.

• pigeonhole property: Let ν1, ν2, . . . , νk be a partition of a sequence η ∈ Ln
into subsequences, then for some j ∈ {1, 2. . . . , k}, νj ∈ Ln.

We give yet another presentation of languages Ln — this time in logical
terms. It will serve as a guideline for us in the construction of alternating
automata recognizing the languages.

Let Bndn(X) be a second order predicate expressing that the set X of posi-
tions in a sequence from Nn has bounded first coordinate. We inductively build
a sequence of MSO formulae using this predicate:

ψn ≡ ∀X.Bndn(X) =⇒ ∃Y.Bndn(Y ) ∧ (X ∩ Y=∅) ∧ (ψn−1|Y ) , (4.1)

where ψn−1|Y is ψn−1 with all quantifiers restricted to Y and operating on Nn
by ignoring the first coordinates of vectors, and ψ0 simply states that a sequence
is infinite.

Observe that:

Fact 4.3. For each n ∈ ω, L(ψn) = Ln.

The formulae (4.1) deal with sequences of vectors, but it is easy to rewrite
it in such a way that it works on ω-words over A and defines Wn(Ln). It
is possible because properties like “being a maximal block of consecutive a’s
that correspond to the k-th coordinate of one of the vectors in a sequence” are
expressible in MSO. It is not hard to observe that the predicate Bndn can be
defined in MSO + U in this context. We do not discuss it here in detail because
it is out of the scope of the paper.

4.2 Topological Complexity
The topological complexity of languages Wn(Ln) is presented as an example
(without proof) in [TL93, pages 595–596]. For the sake of completeness, we
sketch a proof of the following fact here.

Fact 4.4. For every n>0, the language Ln is Π0
2n+2-complete.

The proof is inductive. The following lemma is the basis for the induction.

Lemma 4.5. Language L1 is Π0
4-complete.
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Proof. This is an easy consequence of Exercise 23.6 in [Kec95]. Language L1 is
equivalent to the language P4 presented there. �

In the induction step we use the following Lemma, that is stated as Theorem
2 in [Kur66, §30.V].

Lemma 4.6. For every n > 0 and set Y ∈ Σ0
n, there exist pairwise disjoint

sets Yi ∈ Π0
n−1, such that ⋃

i

Yi = Y.

Proof of Fact 4.4 For n = 1 this is a consequence of Lemma 4.5, as mentioned
above. For every n, the language Ln is in class Π0

2n+2, because quantifier ∃∞m
can be written as ∀k∃m>k.

Let us take n > 1, and any M ∈ Π0
2n+2(X). We construct a continuous

reduction of M to Ln.
There is a decreasing sequence of sets Mi ∈ Σ0

2n+1 such that M =
⋂
iMi.

Using Lemma 4.6 we can define sets M (i)
k ∈ Π0

2n that are (for fixed i) pairwise
disjoint, and ⋃

k

M
(i)
k = Mi.

By inductive assumption, language Ln−1 is Π0
2n-hard, so there are continu-

ous reductions R(i)
k : X → Nn−1 of sets M (i)

k to Ln−1.
Let ι : ω2 → ω be any bijection. Let us define function R : X → Nn that

takes x ∈ M and maps it into the sequence having at any given position z =
ι(ι(i, k),m) ∈ ω value (

ι(i, k),
(
R

(i)
k (x)

)
m

)
∈ ωn,

where the first element in braces is a number and the second is an (n−1)-tuple
of numbers, so they form an n-vector.

This is easy to see that the function defined this way is continuous. Now, it
is enough to show that x ∈M ⇔ R(x) ∈ Ln.

By the definition of Ln we know that R(x) ∈ Ln iff for infinitely many pairs
(i, k), we have R(i)

k (x) ∈ Ln−1. For a fixed i, sets M (i)
k are pairwise disjoint, so

for given i there can be at most one such pair (i, k). Therefore, R(x) ∈ Ln iff
for infinitely many i there exists k, such that x ∈ M (i)

k . This is equivalent to
the fact that for infinitely many i, x ∈Mi. But the sequence Mi is decreasing,
so this is equivalent to the fact that x ∈ M . This shows that R is, indeed, a
reduction of M to Ln. �

4.3 Automata Construction
Theorem 4.7. For each n ∈ ω there is an alternating ωBS-automaton recog-
nizing a Π0

2n+2-hard language.
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Proof. For a fixed n, it is possible to construct an alternating ωBS-automaton
recognizing exactly the language Wn(Ln). However, to avoid some technical
inconveniences, we construct an automaton An for which we only require that
it accepts a word Wn(η) if and only if η ∈ Ln. The latter is sufficient for the
proof of hardness.

The automaton will mimic the formula ψn (see (4.1)): Player ∀ chooses a set
X and Player ∃ chooses a set Y . The problem that we face is that alternation in
automata and quantifier alternation in logic have different semantics. In logic,
using the second order quantifier refers to choosing a set all at once, while in
automata, players make decisions step by step (position by position). We will
be able to overcome this problem using properties of the B-condition.
Automaton. Let us define the automaton An in the following way.

While reading the code of a sequence of vectors, before reading each vector
Player ∀ decides if he chooses the first component of the vector. If ∀ has not
chosen the component, ∃ can choose it. If the component was chosen by ∀,
counter an counts its length and then resets. If the component was chosen by
∃, counter en counts its length and then resets.

If the first component was chosen by ∃ then the procedure is repeated for
the second component and for the counters an−1 and en−1. We continue with
the following components until Player ∃ does not choose a component or all
components of the vector are selected by ∃.

The whole process is repeated for all the vectors in a word.
Player ∀ can additionally reset any of ai counters at any time (except the

moment when it is actually incremented). This is to allow Player ∀ to select a
finite (even empty) set.

The acceptance condition (winning condition for ∃ in the game) requires
that among the counters an, en, an−1, en−1, . . . , a1, e1, the left-most which is
unbounded (or reset finitely many times) is an a-counter, or all counters are
reset infinitely many times and are bounded.
Soundness. For a given word w = Wn(η) such that η ∈ Ln, we have to prove
that the existential player has a winning strategy in An on w. We proceed by
induction. As stated above, η ∈ Ln if and only if there exist infinitely many
m ∈ ω such that

η �=m is infinite and π1̄ (η �=m) ∈ Ln−1 (4.2)

Player ∃ uses the following strategy. Let k be the greatest value of the first
component among vectors selected by Player ∀ so far. Let mk be the least m
greater than k, for which condition (4.2) holds. Player ∃ selects a vector if its
first component is equal to mk.

Note that we may assume that k is increased only finitely many times dur-
ing the run (otherwise Player ∀ loses). Hence, there exists a value mk0 that
occurs at the first component of almost all vectors selected by Player ∃. By the
assumption, π1̄(η �=mk0) ∈ Ln−1, i.e. η restricted to vectors having mk0 as the
first component, with the first component erased, belongs to Ln−1. Player ∃ se-
lects almost all vectors with mk0 as the first component. Therefore, since Ln−1
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is prefix-independent, also η restricted to the vectors selected by Player ∃, with
the first component erased, belongs to Ln−1. It follows by inductive assump-
tion that ∃ has a strategy on further components of vectors of this restricted
sequence.

Induction basis: Since W0(L0)={cω}, it is straightforward to construct an
automaton recognizing it.
Correctness. Now let us take w = Wn(η) such that η /∈ Ln. We have to
prove that the universal player has a winning strategy in An on w. Note that
a strategy of ∀ (as well as of ∃) in An is simply a selection procedure of vectors
or components of vectors. For the induction purposes we strengthen the claim,
and prove the following:

Lemma 4.8. If w = Wn(η) such that η /∈ Ln, then Player ∀ has a winning
strategy σ in An on w such that if ν is a subsequence of η then the strategy σ
restricted to positions of ν is winning in An on Wn(ν).

Note that if η /∈ Ln, then there exists m0 such that for all m ≥ m0

η �=m is finite or π1̄ (η �=m) /∈ Ln−1 (4.3)

Player ∀ can use the following strategy: Select all the vectors with the first
coordinate less than m0. If there are only finitely many such vectors, ∀ uses
additional resets. During the game, Player ∀ remembers the largest first coor-
dinate M of vectors selected by Player ∃.

For every i ∈ {m0, . . . ,M} we have η �=i is finite or π1̄ (η �=i) /∈ Ln−1, so

ηM := η �∈{m0,m0+1,...,M} is finite or ηM := π1̄ (ηM ) /∈ Ln−1.

The above holds, because of the pigeonhole property of Ln−1.
If ηM is finite, Player ∃ will lose the game (if she does not increase M). We

can then assume that ηM /∈ Ln−1. Then, by the inductive assumption, Player
∀ has a winning strategy σ on ηM that satisfies the condition from Lemma 4.8.
Player ∀ can use a restriction of the strategy σ to the vectors selected by Player
∃ to win the game, until Player ∃ selects something greater than M .

The value M can increase only finitely many times during the game (oth-
erwise Player ∃ loses). Using prefix independence of the winning condition, we
obtain that ∀ wins the game.

The inductive basis is trivial here, since there is no η ∈ N0 \ L0. �

5 Conclusions
The languages presented in Section 2 enable us to give exact estimations of the
topological complexity of MSO + U definable sets.

Theorem 5.1. For every MSO + U formula ϕ over infinite words or trees, the
language L(ϕ) is in Σ1

i for some i. Additionally, for every i ∈ ω there is an
MSO + U definable language that is hard for Σ1

i .
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Proof. Quantifiers ∃,∀ correspond to projection and co-projection. Quantifier
U can be interpreted as a countable intersection of countable unions ranging
over all finite sets. Therefore, for a given MSO + U formula we can inductively
show that L(ϕ) ∈ Σ1

|ϕ|, no matter whether ω-word or infinite tree languages are
concerned.

Using Theorem 2.1, we obtain examples of MSO + U languages that are hard
in classes at arbitrarily high projective levels. Of course those examples may
also be interpreted in infinite binary trees (e.g. on the leftmost branch). �

Note that the theorem is also true for languages of infinite graphs, digraphs,
grids, or any other structures that do not have non-projective predicates and
that we can encode ω-words in (in an MSO definable way).

Additionally, the following remarks summarise the topological complexity of
WMSO + U.

Remark 5.2 (See [CDFM09]). Every WMSO + U definable ω-word language
is a boolean combination of Σ0

2 sets.

Remark 5.3. WMSO + U over infinite trees defines languages at finite levels
of the Borel hierarchy.

Proof. Weak quantifiers ∃,∀ correspond to countable unions and intersections.
Quantifier U, as mentioned in the previous proof, can be expressed as countable
intersection of countable unions. Therefore for every WMSO + U formula ϕ we
can show that L(ϕ) ∈ Σ0

2|ϕ|.
On the other hand, over trees even WMSO without the unbounding quan-

tifier is able to define languages at arbitrarily high finite levels of the Borel
hierarchy (see [Sku93]). �

Therefore, this paper gives the last element needed to estimate the topolog-
ical complexity of U in all four contexts: weak or full MSO logics over words or
trees.

In the statement of the following theorem we use term projective accepting
condition. By this we mean any condition on possible runs (or plays) of the
automaton that is in some class Σ1

i . The following example shows that the
accepting condition of nondeterministic tree automata is projective.

Example 5.4. The accepting condition of nondeterministic parity automata on
trees is in Π1

1.

Proof. The condition can be expressed in the following way: a run ρ is accepting
iff for every infinite branch of a tree, the lim sup of the ranks of ρ on this branch
is even. Since the property „lim sup of the ranks is even” is Borel, the above
condition is Π1

1 as a co-projection of a Borel set. �

Theorem 5.5. There is no model of alternating (neither nondeterministic nor
deterministic) automata with a fixed projective accepting condition that can cap-
ture the whole expressive power of MSO + U on ω-words.
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Proof. Assume that there is one. Since alternating automata are the most
general, we focus on them. The accepting condition is a subset T ⊆ Cω, where
C denotes the (possibly infinite) set of configurations of an automaton and Cω
is a set of all possible plays in the game induced by the automaton.

In that case L(A) can be written as a set of such words α ∈ Aω on which
there exists a strategy σ of Player ∃ such that for every possible play τ consistent
with this strategy we have τ ∈ T . It is easy to observe that properties „σ is
a strategy for ∃” and „τ is a run consistent with σ” are Borel (in fact closed).
Therefore, by the above definition, if T ∈ Σ1

i then L(A) ∈ Σ1
i+2. But, by

Theorem 2.1, there are MSO + U definable languages that are not in Σ1
i+2, that

yields a contradiction. �

We have also shown the topological complexity of automata models that were
considered in the context of MSO + U logic before. In Theorem 3.2, Corollary
3.3 and Theorem 3.5 we show that nondeterministic ωB-, ωS-, ωBS -automata
recognize languages in Σ0

3, Π0
3, Σ0

4, respectively. Additionally in Fact 3.4 and
Fact 3.6 we show that there are appropriate automata recognizing languages
hard in their respective topological classes. Thanks to this upper and lower
complexity bounds we can say that the topological complexity of these automata
models is solved.

In Chapter 4 we showed that for each finite level of the Borel hierarchy there
is a language recognized by an alternating ωBS -automaton hard for this level.
This, in particular, implies:

Corollary 5.6. Alternating ωBS -automata are more expressive than boolean
combinations of nondeterministic ωBS -automata.

As far as the authors know, it was never observed before the paper [HST10].

6 Further Work
This paper gives exact estimations on the topological complexity of the quan-
tifier U and automata models: ωB, ωS and ωBS. However, there are still some
open questions in this subject. The following list contains some of them.

1. What does the Wadge hierarchy (see [Wad83]) look like for the MSO + U
definable languages?

2. Is there any MSO + U definable language that is a boolean combination of
Σ0

2 sets and is not Wadge-equivalent to any ω-regular language (compare
to [CDFM09])?

3. Is there any gap property for MSO + U logic (see [NW03])?

There is a partial and potentially interesting answer for the last question.
The conjecture about the gap property for nondeterministic tree languages says:
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Conjecture 6.1. Every regular tree language is either non-Borel or in Σ0
n for

some n ∈ ω.
It turns out that this is false in the case of MSO + U definable languages.

Example 6.2. There exists an MSO + U definable language of labelled infinite
binary trees, that is at an infinite level of the Borel hierarchy.
Proof. Let L∞ be the language of infinite binary trees t over the alphabet
{x,+,−, b}, such that: there exists a subtree (prefix-closed subset of nodes)
T ⊆ {L,R}∗ labelled in the following way
• inner nodes of T are labelled by x,

• leaves of T are labelled by + or −,

• vertices in {L,R}∗ \ T are labelled by b,
such that
• if v ∈ T then v is either a leaf of T or

– if v is a left child then the leftmost infinite branch starting in v is in
T ,

– if v is a right child or a root then the rightmost infinite branch starting
in v is in T ,

• the number of turns (alternations of L and R) on branches of T is bounded
(this number is called the depth of T ),

and that there exists S ⊆ T , such that:
• ε ∈ S,

• for any v ∈ S that is not a leaf of T , we have

– if v is a left child then vL∗R ⊆ S and
– if v is a right child or a root then vRnL ∈ S for some n ∈ ω,

• for any v ∈ S that is a leaf of T , we have t(v) = +.
It is easy to check that all these properties can be expressed in MSO + U.

Additionally, for a fixed depth of T , the above language is at a finite level of the
Borel hierarchy. So L∞ ∈ Σ0

ω. But for any i < ω we can easily reduce any Σ0
i

language to L∞ using standard techniques (see e.g. [TL93]). Therefore L∞ is
not finite Borel. �

There is also one question on the automata side that we leave open. There
is a huge gap between the upper and the lower bound for the complexity of
alternating ωBS -automata that we provide. On one hand we know that they
inhabit at least all finite levels of the Borel hierarchy. On the other hand,
using reasoning as in the proof of Theorem 5.5, we obtain that each language
recognized by such an automaton is in Σ1

2. The gap is significant, however, the
importance of the model has decreased, as we know that it is not sufficient to
cover the whole expressive power of MSO + U logic.
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