Literatura dodatkowa
(bynajmniej lista nie wyczerpuje całej dostępnej
literatury a tylko podaje kilka przykładowych książek)
Podręczniki - podstawy metod
numerycznych
- Ȧke Bjorck, Germund Dahlquist, Metody
Numeryczne, PWN, Warszawa, 1983.
- Richard L. Burden, J. Douglas Faires, Numerical Analysis,
Wydanie 7, Brooks/Cole, 2001.
- G. Hämmerlin, K-H. Hoffmann, Numerical
mathematics, Springer, New York, 1991.
- J.M.Jankowscy, Metody
numeryczne, tom 1, WNT, 1981.
- M.Dryja, J.M.Jankowscy, Metody
numeryczne, tom 2, WNT, 1982.
- D.Kincaid, W.Cheney, Numerical
Analysis, 2gie wyd.,
Brooks/Cole, 1996. (Polskie wydanie: D.Kincaid, W.Cheney, Analiza
numeryczna, WNT, 2006
- J. Ortega, Numerical analysis,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
2000.
- A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer,
New York, 2000.
- Anthony Ralston Wstęp do
analizy numerycznej. PWN Warszawa, 1983. Tłumaczenie I wydania z
roku 1965.
- Anthony Ralston, Philip Rabinowitz, A first course in numerical analysis.
Reprint of the 1978 second edition.
Dover Publications, Inc., Mineola, NY, 2001.
- J. Stoer, R. Bulirsch, Wstęp
do metod numerycznych, Tom drugi, PWN, Waszawa 1980.
- J. Stoer, Wstęp do metod
numerycznych, Tom pierwszy, PWN, Waszawa 1979.
Metody numeryczne algebry liniowej i metody
rozwiązywania równań nieliniowych
- James W. Demmel, Applied Numerical Linear Algebra.
Society for Industrial and Applied Mathematics (SIAM),
Philadelphia
1997.
- Gene H. Golub, Charles Van Loan, Matrix Computations.
Johns
Hopkins
University Press, 1996.
- G. H. Golub, J. M. Ortega, Scientific
computing, Academic Press, Boston, MA, 1993 .
- G. H. Golub, J. M. Ortega, Scientific computing
and differential equations, Academic Press, Boston, MA, 1992.
- R. Barret, M. Berry, Tony F. Chan, J. Demmel, J. M. Donato, J.
Dongarra, V. Eijkhout, R. Pozo, Ch. Romine, H. Van der Vorst,Templates for the Solution of Linear
Systems. Building Blocks for Iterative Methods. On-line
ftp.netlib.org/templates/templates.ps.
- W. Hackbusch, Iterative
solution of large sparse systems of
equations, Translated and revised from the 1991 German original,
Springer, New York, 1994.
- C. T. Kelley, Iterative
methods for linear and nonlinear equations.
Frontiers in Applied Mathematics, 16. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1995.
- C. T. Kelley, Solving
nonlinear equations with Newton's method, Society for Industrial
and Applied Mathematics (SIAM), Philadelphia,
PA, 2003.
- C. T. Kelley, Iterative
methods for optimization, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1999.
- A. Kiełbasiński, H. Schwetlick. Numeryczna algebra liniowa: wprowadzenie do obliczeń zautomatyzowanych.
Wydawnictwo Naukowo Techniczne (WNT), Warszawa, 1992.
- J. M. Ortega, W. C. Rheinboldt, Iterative solution of
nonlinear equations in several variables, Reprint of the 1970
original, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2000.
- J. M. Ortega, Numerical
analysis, Second edition, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1990.
- J. M. Ortega, Introduction
to parallel and vector
solution of linear systems, Plenum, New York, 1989.
- J. M. Ortega, Matrix
theory, Plenum, New York, 1987.
- Beresford N.
Parlett, The symmetric eigenvalue
problem.
Prentice-Hall Series in Computational Mathematics.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.
- Yousef Saad, Iterative methods for sparse linear systems.
Society for Industrial and Applied Mathematics (SIAM),
2003. 2gie wydanie.
On-line: http://www-users.cs.umn.edu/~saad/books.html
- Yousef Saad, Numerical methods for large eigenvalue
problems, SIAM, 2011. 2gie wydanie.On-line: http://www-users.cs.umn.edu/~saad/books.html.
- A. A. Samarski, J. S. Nikołajew. Metody rozwiązywania równań siatkowych. PWN 1988.
-
Lloyd N. Trefethen, David Bau, III
Numerical linear algebra.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.
Metody numeryczne dla równań
różniczkowych cząstowych (i całkowych)
- D. Braess, Finite
elements, Translated from the 1992 German edition by Larry L.
Schumaker, Third edition, Cambridge Univ. Press, Cambridge, 2007.
- J. H. Bramble, Multigrid
methods, Longman Sci. Tech., Harlow, 1993.
- S. C. Brenner, L. R. Scott, The mathematical theory of finite element
methods, 3ed edition, Springer, New York, 2008.
- F. Brezzi, M. Fortin, Mixed
and hybrid finite element methods, Springer, New York, 1991.
- C. Canuto, Y. Hussaini, A. Quarteroni, T. Zang , Spectral methods in fluid dynamics,
Springer, New York, 1988.
- P. G. Ciarlet, The
finite element method for elliptic problems,
Reprint of the 1978 original [North-Holland, Amsterdam], Society for
Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2002.
- W. Hackbusch, Integral
equations, Translated and revised by the author from the 1989
German original, Birkheauser, Basel, 1995.
- W. Hackbusch, Elliptic
differential equations,
Translated from the author's revision of the 1986 German original by
Regine Fadiman and Patrick D. F. Ion, Springer, Berlin, 1992.
- W. Hackbusch, Multigrid
methods and applications, Springer, Berlin, 1985.
- J. M. Ortega, R. G. Voigt, Solution of partial
differential equations on vector and parallel computers, Society
for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1985.
- J. M. Ortega, W. G. Poole, Jr., An
introduction to numerical methods for differential equations,
Pitman,
Boston, Mass., 1981.
- A. Quarteroni, F. Saleri, Scientific
computing with MATLAB, Springer, Berlin, 2003.
- A. Quarteroni, A. Valli, Domain
decomposition methods for
partial differential equations, Oxford Univ. Press, New York,
1999.
- A. Quarteroni, A. Valli, Numerical
approximation of partial differential equations, Springer,
Berlin,
1994.
- B. F. Smith, P. E. Bjorstad, W. D. Gropp, Domain decomposition, Cambridge
Univ. Press, Cambridge, 1996.
- Lloyd N. Trefethen, Finite Difference and Spectral
Methods for Ordinary and Partial Differential Equations,
unpublished text, 1996, available at http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html.
Metody numeryczne
dla równań
różniczkowych zwyczajnych
- Uri M Ascher,
Linda R. Petzold, Computer methods
for ordinary
differential equations and differential-algebraic equations.
Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1998.
- J.C Butcher, Numerical methods
for ordinary differential equations. John Wiley & Sons,
Ltd., Chichester, 2003.
- K. Dekker, J. G. Verwer, Stability
of Runge-Kutta methods for stiff nonlinear differential equations.
CWI Monographs, 2. North-Holland Publishing Co., Amsterdam, 1984.
- C. William Gear, Numerical
initial value problems in ordinary differential equations.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971.
- Ernst Hairer, S.P. Nørsett, G. Wanner, Solving ordinary differential equations.
I.
Nonstiff problems. Second edition.
Springer Series in Computational Mathematics, 8. Springer-Verlag,
Berlin, 1993.
- Ernst Hairer, G. Wanner Solving ordinary differential equations.
II. Stiff and differential-algebraic
problems.
Second edition.
Springer Series in Computational Mathematics, 14. Springer-Verlag,
Berlin, 1996.
- Ernst Hairer, Christian Lubich, Michael Roche, The numerical solution of
differential-algebraic systems by Runge-Kutta methods.
Lecture Notes in Mathematics, 1409. Springer-Verlag, Berlin, 1989.
- Peter
Henrici, Discrete variable methods
in ordinary differential equations. John Wiley & Sons,
Inc., New York-London 1962.
- Herbert B. Keller, Numerical solution of two point
boundary value problems.
Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976
- J. D. Lambert, Numerical
methods for ordinary differential systems.
The initial value problem.
John Wiley & Sons, Ltd., Chichester, 1991.
- Leon Lapidus, John H.
Seinfeld, Numerical solution of
ordinary differential equations.
Mathematics in Science and Engineering, Vol. 74 Academic Press, New
York-London 1971
- Andrzej Palczewski
Równania Różniczkowe zwyczajne Teoria i metody numeryczne z
wykorzystaniem komputerowego
systemu obliczeń symbolicznych.
Wydawnictwo Naukowo-Techniczne (WNT) ,Warszawa
1999.
- Lawrence F. Shampine, Numerical
solution of ordinary differential equations.
Chapman & Hall, New York, 1994.
- Lawrence F. Shampine, C. William Gear,
A user's view of solving stiff ordinary differential equations. SIAM Review 21 (1979), nr. 1,
1--17.
- Hans J. Stetter, Analysis
of discretization
methods for ordinary differential equations.
Springer Tracts in Natural Philosophy, Vol. 23.
Springer-Verlag, New York-Heidelberg, 1973.
- Lloyd N. Trefethen, Finite Difference and Spectral
Methods for Ordinary and Partial Differential Equations,
unpublished text, 1996, available at
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html.
Teoria aproksymacja - funkcje gięte:
splajny
- Arcangéli, Rémi; López de Silanes, María Cruz; Torrens, Juan José.
Multidimensional minimizing splines.
Theory and applications. Grenoble Sciences. Kluwer Academic Publishers, Boston, MA, 2004.
- Bezhaev, Anatoly Yu., Vasilenko, Vladimir A.
Variational theory of splines. Kluwer Academic/Plenum Publishers, New York, 2001.
- Carl de Boor,A
practical guide to splines. Applied Mathematical Sciences, 27.
-
Lai, Ming-Jun, Schumaker, Larry L. Spline functions on triangulations.
Encyclopedia of Mathematics and its Applications, 110. Cambridge University Press, Cambridge, 2007
-
Prautzsch, Hartmut, Boehm, Wolfgang, Paluszny, Marco.
Bézier and B-spline techniques.
Mathematics and Visualization. Springer-Verlag, Berlin, 2002.
- P. M. Prenter, P. M. Splines
and variational methods.
Reprint of the 1975 original. Wiley
Classics Library. A Wiley-Interscience Publication.
John Wiley & Sons, Inc., New York, 1989.
-
Schumaker, Larry L.
Spline functions: basic theory.
Third edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2007.
-
Wang, Ren-Hong.
Multivariate spline functions and their applications.
Translated from the 1994 Chinese original by Shao-Ming Wang and revised
by the author. Mathematics and its Applications, 529. Kluwer Academic
Publishers, Dordrecht; Science Press, Beijing, 2001.
Szybka transformacja Fouriera
- Clausen, Michael,Baum, Ulrich.
Fast Fourier transforms. (English summary) Bibliographisches Institut, Mannheim, 1993.
-
Nussbaumer, Henri J.
Fast Fourier transform and convolution algorithms.
Springer Series in Information Sciences, 2. Springer-Verlag, Berlin-New York, 1981.
-
Pickering, Morgan.
An introduction to fast Fourier transform methods for partial
differential equations, with applications.
Electronic & Electrical Engineering Research Studies: Applied and
Engineering Mathematics Series, 4. Research Studies Press, Ltd.,
Chichester; John Wiley & Sons, Inc., New York, 1986.
- Richard Tolimieri, Myoung An, Chao Lu, Mathematics of multidimensional Fourier
transform algorithms.
Second edition.
Signal Processing and Digital Filtering. Springer-Verlag, New York,
1997.
- Charles Van Loan, Computational
frameworks for the fast Fourier transform.
Frontiers in Applied Mathematics, 10. Society for Industrial and
Applied
Mathematics (SIAM), Philadelphia, PA, 1992.
- Walker, James S.
Fast Fourier transforms.
Second edition. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1996.
Handbook of numerical analysis. (Encyklopedia analizy numerycznej- zbiór
artykułów opisujących wszystkie działy)
- Handbook of numerical analysis. Vol. I.
Edited by P. G. Ciarlet and J.-L. Lions. North-Holland,
Amsterdam, 1990. Contents: P. G. Ciarlet and J.-L. Lions,
General preface (pp. v--vi).
Finite difference methods. Part 1: G. I. Marchuk, Introduction (pp.
3--4);
Vidar Thomée, Finite difference methods for linear parabolic equations
(pp. 5--196);
G. I. Marchuk, Splitting and alternating direction methods (pp.
197--462).
Solution of equations in $R^n$. Part 1: Åke Björck,
Least squares methods (pp. 465--652).
- Handbook of numerical analysis. Vol. II.
Finite element methods. Part 1.
Edited by P. G. Ciarlet and J.-L. Lions. North-Holland,
Amsterdam, 1991. Contents:
J. Tinsley Oden, Finite elements: an introduction (pp. 3--15);
P. G. Ciarlet, Basic error estimates for elliptic problems (pp.
17--351);
Lars B. Wahlbin, Local behavior in finite element methods (pp.
353--522);
J. E. Roberts [Jean Elizabeth Roberts] and J.-M. Thomas [Jean-Marie
Thomas],
Mixed and hybrid methods (pp. 523--639);
I. Babuv ska and J. Osborn [John E. Osborn], Eigenvalue problems (pp.
641--787);
Hiroshi Fujita and Takashi Suzuki, Evolution problems (pp. 789--928).
- Handbook of numerical analysis. Vol. III. Techniques of scientific computing. Part 1.
Numerical methods for solids. Part 1. Solution of equations in R^n.
Part 2.
Edited by P. G. Ciarlet and J.-L. Lions. North-Holland,
Amsterdam, 1994. Contents: Claude Brezinski, Historical
perspective on interpolation, approximation and
quadrature (3--46);
Claude Brezinski and Jeannette Van Iseghem, Padé approximations
(47--222);
Blagovest Sendov and Andreui Andreev, Approximation and interpolation
theory (223--462);
Patrick Le Tallec, Numerical methods for nonlinear three-dimensional
elasticity
(465--622); Bl. Sendov, A. Andreev [Andreui St. Andreev] and N.
Kjurkchiev
[Nikolaui V. Kyurkchiev], Numerical solution of polynomial equations
(625--778).
- Handbook of numerical analysis. Vol. IV. Finite element methods. Part 2.
Numerical methods for solids. Part 2. Edited by P. G. Ciarlet and J. L.
Lions. North-Holland, Amsterdam, 1996. Contents:
O. C. Zienkiewicz, Origins, milestones and directions of the finite
element method---a personal view (3--67);
P. L. George, Automatic mesh generation and finite element computation
(69--190);
Edmund Christiansen, Limit analysis of collapse states (193--312);
J. Haslinger, I. Hlavácek and J. Necas, Numerical methods for
unilateral problems in solid mechanics (313--485);
L. Trabucho and J. M. Via no [Juan M. Via no Rey], Mathematical
modelling of rods (487--974).
- Handbook of numerical analysis. Vol. V. Techniques of scientific computing. Part 2.
Edited by P. G. Ciarlet and J. L. Lions. North-Holland,
Amsterdam, 1997. Contents: Eugene L. Allgower and Kurt Georg,
Numerical path following (3--207);
Christine Bernardi and Yvon Maday, Spectral methods (209--485);
Gabriel Caloz and Jacques Rappaz, Numerical analysis for nonlinear and
bifurcation problems (487--637);
Y. Meyer, Wavelets and fast numerical algorithms (639--713);
Jean-Jacques Risler, Computer aided geometric design (715--818).
- Handbook of numerical analysis. Vol. VI.
1998. Numerical methods for solids.
Part 3.
Numerical methods for fluids. Part 1.
Edited by P. G. Ciarlet and J. L. Lions. North-Holland,
Amsterdam, Contents: Robert M. Ferencz and Thomas J. R. Hughes,
Iterative finite element
solutions in nonlinear solid mechanics (3--178);
Thomas J. R. Hughes and David M. Barnett, Obituary: Juan Carlos Simo
(1952--1994) (179--181);
J. C. Simo, Numerical analysis and simulation of plasticity (183--499);
Martine Marion and Roger Temam, Navier-Stokes equations: theory and
approximation (503--688).
- Handbook of numerical analysis. Vol. VII. Solution of equations in R^n. Part 3.
Techniques of scientific computing. Part 3. Edited by P. G.
Ciarlet and J. L. Lions. North-Holland, Amsterdam, 2000. Contents:
Gérard Meurant, Gaussian elimination for the solution of linear systems
of
equations (3--170);
James H. Bramble and Xuejun Zhang, The analysis of multigrid methods
(173--415); Albert Cohen, Wavelet methods in numerical analysis
(417--711);
Robert Eymard, Thierry Gallouët and Raphaèle Herbin, Finite volume
methods (713--1020).
- Handbook of numerical analysis. Vol. VIII. Solution of equations in R^n. Part 4.
Techniques of scientific computing. Part 4.
Numerical methods for fluids. Part 2. Edited by P. G. Ciarlet
and J. L. Lions. North-Holland, Amsterdam, 2002. Contents:
Henk A. van der Vorst, Computational methods for large eigenvalue
problems (3--179); Patrick J. Rabier and Werner C. Rheinboldt,
Theoretical and numerical
analysis of differential-algebraic equations (183--540);
E. Fernández-Cara, F. Guillén [Francisco M. Guillén González] and
R. R. Ortega, Mathematical modeling and analysis of viscoelastic fluids
of the
Oldroyd kind (543--661).
- Handbook of numerical analysis. Vol. IX. Numerical methods for fluids. Part 3.
Edited by P. G. Ciarlet and J. L. Lions. North-Holland,
Amsterdam, 2003. Contents:
Roland Glowinski, Finite element methods for incompressible viscous
flow (3--1176)