
Fair share is not enough: measuring fairness in

scheduling with cooperative game theory

Piotr Skowron and Krzysztof Rzadca

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland,

p.skowron@mimuw.edu.pl, krzadca@mimuw.edu.pl

Abstract. We consider the problem of fair scheduling in a multi-organizational

system in which organizations contribute their own resources to the global pool

and the jobs to be processed on the common resources. We consider on-line, non-

clairvoyant scheduling of sequential jobs without preemption. To ensure that the

organizations are willing to cooperate the scheduling algorithm must be fair.

To characterize fairness, we use a cooperative game theory approach. The contri-

bution of an organization is computed based on how this organization influences

the utility (which can be any metric, e.g., flow time, turnaround, resource allo-

cation) of all organizations. Formally, the contribution of the organization is its

Shapley value in the cooperative game. The scheduling algorithm should ensure

that the contributions of the organizations are close to their utilities. Our previous

work proves that this problem is NP-hard and hard to approximate.

In this paper we propose a heuristic scheduling algorithm for the fair scheduling

problem. We experimentally evaluate the heuristic and compare its fairness to

fair share, round robin and the exact exponential algorithm. Our results show

that fairness of the heuristic algorithm is close to the optimal. The difference

between our heuristic and the fair share algorithm is more visible on longer traces

with more organizations. These results show that assigning static target shares (as

in the fair share algorithm) is not fair in multi-organizational systems and that

instead dynamic measures of organizations’ contributions should be used.

keywords: fair scheduling, game theory, algorithm

1 Introduction

A large fraction of contemporary supercomputing resources is run by consortia of in-

dependent organizations: from local supercomputing centers shared by a few research

groups to international grids, such as Grid5000, DAS or Planet-lab. Each participating

organization grants access to its resources to other members of the consortium; in re-

turn, an organization expects to be given a fair access to other resources. The role of the

consortium is to coordinate access to the resources through a scheduler. Fairness is cru-

cial to the existence of such systems: if an organization feels that it is treated unfairly, it

may quit the consortium, thus reducing the pool of the resources accessible by others.

Fairness is one of the key problems in scheduling. Most existing approaches [2,6–

10,18] are based on distributive fairness: agents (users, projects or organizations) are

assigned a target share of the available resources. The scheduler’s goal is to produce

schedules with an average utilization per agent close to the target share. However, dis-

tributive fairness does not correspond with agents’ goals: an agent, rather than being

given an equal share of resources, wants its jobs to be completed fast. Alternative ap-

proaches consider agents’ utilities (and, sometimes, possible actions of agents). [11]

proposes an axiomatic characterization of fairness based on multi-objective optimiza-

tion; [16] applies this concept to scheduling in a multi-organizational system. [3,4] op-

timizes the global makespan with an additional constraint that each organization must

be at least as well-off as if it acted alone. See [17] for more detailed related work.

In our previous work [17], we considered the problem of fairness by determining

the Shapley value of each organization (we summarize these results in Section 3). The

Shapley value is a concept commonly used in the cooperative game theory. For an orga-

nization, its Shapley value expresses the relative value of the organization to the others.

Thus, it represents a fair amount of utility an organization should get from the schedule.

In contrast to other works [1,12–14] using monetary valuations for jobs, we proposed to

compute the Shapley value directly as a function of how organization’s processors in-

crease other organization utilities; and how organization’s jobs decrease others utilities.

The problem is that an exact scheduling algorithm that produces schedules approximat-

ing the Shapley value is exponential (O(3n)).
The contribution of this paper is the following. First, we propose a practical

heuristic that schedules jobs according to an estimated Shapley value (Algorithm DI-

RECTCONTR in Section 4). The heuristic estimates the contribution of an organization

by the number of CPU-timeunits an organization contributes for computing jobs of

other organizations; the algorithm schedules the jobs to minimize the maximal differ-

ence between the utility and the contribution over all organizations. Second, we con-

duct extensive simulation experiments to verify fairness of commonly-used scheduling

algorithms (Section 5). The experiments show that although the fair share algorithm

is considerably better than round robin (which does not aim to optimize fairness), our

heuristic constantly outperforms fair share, being close to the optimal algorithm and the

randomized approximation algorithm. The main conclusion is that ensuring that each

party is given a fair share of resources (the distributive fairness approach) might not

be sufficient in systems with dynamic job arrival patterns. An algorithm based on the

Shapley value, that explicitly considers the organization’s impact on other organiza-

tions’ utilities, produces more fair schedules.

2 The Scheduling Model

We consider a multi-organizational model in which the organizations may cooperate;

the set of cooperating organizations is called a coalition and denoted as C. Every subset

of a coalition is also a coalition; however, to emphasize that we are considering a subset

of the organizations from a particular C, we will refer to such subsets as to subcoalitions

of C. Each organization O(u) participating in a coalition C is contributing its local re-

sources (its processors) to the coalition’s global pool. In return, each organization from

C can use all the processors from the coalition’s pool to process its own jobs.

The jobs of the organizations may compete for the processors (this happens when

in a given time moment there are more jobs waiting for execution than the total number

of free processors), so the organizations need to agree on the scheduling algorithm.

Each organization wants its jobs to be processed as fast as possible. The satisfaction

of an organization from a schedule can be quantified by a utility function. The utility

function of the organization can be any metric that depends on the completion times

of the jobs owned by this organization. The classic utilities in the scheduling theory

are: flow time, tardiness, turnaround, resource utilization, etc. Hereinafter we will use

ψ when referring to the utility function.

The total utility of the organizations participating in coalition C is called the value

of the coalition and denoted as v(C). Thus, v(C) =
∑

O(u)∈C ψ(O
(u)).

We consider on-line, non-clairvoyant scheduling of sequential jobs. The started jobs

cannot be stopped, canceled, or preempted. The organizations decide about the order of

processing their own jobs: the jobs of a single organization must be executed in the

order they were presented by the organization. The processors are identical.

3 Fairness by the Shapley Value

In this section we describe our approach to fair scheduling by computing the Shapley

value. The section summarizes the theoretical results from our previous work [17].

3.1 Computing the Shapley Value

The core idea of our approach lies in computing the effective influence an organiza-

tion has on the utility of other organizations. The standard, budget-based approaches,

when computing the load of an organization, just compute the number of CPU-seconds

consumed by the jobs belonging to the organization. This approach ignores the fact

that the resources used in peak load periods should be comparatively more expensive

than the resources used during low load periods. Similarly, resources contributed by an

organization are more valuable during peak load times than when other resources are

already idle. Their value directly stems from their ability to execute waiting jobs and

thus improve the overall performance.

Taking this approach, the marginal contribution of the organizationO(u) to a coali-

tion C (O(u) /∈ C) is v(C ∪ {O(u)}) − v(C)), i.e., the difference of the total utility

of organizations belonging to C (including O(u)) when O(u) joins C. Intuitively, the

marginal contribution of the organizationO(u) to a coalition C measures how the pres-

ence of the organization O(u) influences (increases or decreases) the completion times

of the jobs (the utility) of all organizations participating in C.

The contribution φ(u)(C) of the organization O(u) is its Shapley value. Intuitively,

the Shapley value expresses the relative worth of an organization. Formally, let LC

denote all orderings of the organizations from the coalition C. Each ordering ≺C can be

associated with a permutation of the set C, thus |LC | = |C|!. For the ordering ≺C∈ LC

we define ≺C (O(i)) = {O(j) ∈ C : O(j) ≺C O
(i)} as the set of all organizations from

C that precede O(i) in the order ≺C. The Shapley value can be expressed [15] in the

following form:

φ(u)(v(C)) =
1

|C|!

∑

≺C∈LC

(

v(≺C (O(u)) ∪ {O(u)})− v(≺C (O(u))
)

. (1)

When computing the contribution φ(u)(C) of the organizationO(u) to a coalition C
we consider the process of formation of C—we consider that the organizations may join

C in different orders. For each such an order≺, the organizationO(u) joins some already

formed subcoalition C′ ⊂ C. This subcoalition C′ consists of the organizations that

joined beforeO(u), and so of the organizations that are beforeO(u) in ≺. The organiza-

tion O(u) joining C′ ⊂ C changes the value of the coalition by v(C′ ∪ {O(u)})− v(C′))
(this is the marginal contribution of O(u) to C′). The contribution of the organization

O(u) to a coalition C is the expected marginal contribution ofO(u) when the expectation

is taken over all orders of the organizations from C.

An ideally-fair scheduling algorithm should ensure that for each organizationO(u),

its utility is equal to its contribution, ∀u ψ(O(u)) = φ(u)(v(C)); however, as the

scheduling problem is discrete, such a solution may not exist. Instead, the goal should

be to construct in each time moment a schedule that is as fair as possible. More for-

mally, an on-line scheduling algorithm, when there is a free processor, should choose

a job of an organization O(u)∗ that, after being scheduled, minimizes the distance of

contributions to utilities, |
∑

u ψ(O
(u))− φ(u)(v(C))|.

The problem is that, in order to compute contribution φ(u)(v(C)), each of 2|C| pos-

sible coalitions must be analyzed. The complexity of the resulting scheduling algorithm

is O(|O|(2|O|
∑

m(u) + 3|O|)) [17].

3.2 Strategy-resilient utility functions

When defining fairness we need to compare values of utility functions. In distributive

fairness the utilities of the organizations should be proportional to their weights. In

Shapley fairness (Section 3.1) the utilities should be close to the contributions. How-

ever, most of the classic utility functions create incentives for organizations to manipu-

late their workload. An organization can change its utility by e.g. merging, splitting or

delaying their jobs. E.g., consider a job released and started in time 0 and completed in

time 2. The flow time of the job is 2. If the job is spit into two smaller jobs – one started

in time 0 and completed in time 1 and the other started in time 1 and completed in time

2, then the total flow time of the two jobs is 3. Thus, by splitting a job, the organization

can later require better service by claiming that it obtained worse service from what it

actually got.

A strategy-resilient (non-manipulable) utility function exists [17]. Let σ denote a

schedule of the jobs of a given organization. We assume that σ is a set of pairs (s, p),
each pair representing a single job; s denotes the start time and p denotes the processing

time of a job. If the job is not yet completed (p is not known), we set p = (t − s). A

strategy-resilient utility function in time t has the following form:

ψsp(σ, t) =
∑

(s,p)∈σ:s≤t

p

(

t−
s+ (s+ p− 1)

2

)

. (2)

Intuitively, in ψsp the jobs are considered as sets of unit-size tasks. Each task obtains

a utility proportional to the time in which it completes. If a job completes at time tc, at

time t it gets a utility equal to (t− tc). This function can be thought of as the throughput

of the jobs of an organization. If we consider a fixed set of jobs with equal processing

times, maximization of ψsp is equivalent to minimization of the flow time [17]. The

utility function ψsp takes into account only the completed jobs and the completed unit-

size parts of the jobs (by setting p = (t− s) whenever job is still being processed), thus

it is adequate for non-clairvoyant models).

4 Algorithms

In this section we describe the algorithms that we evaluate. We start by a description of

the exact exponential fair algorithm REF [17]; we then describe a randomized algorithm

RAND [17] approximating REF; our new heuristic DIRECTCONTR; and the reference

algorithms ROUNDROBIN and FAIRSHARE in three versions differing by what the al-

gorithm balance: the shares of assigned processors in FAIRSHARE, the utility functions

in UTFAIRSHARE and the number of concurrently executed jobs in CURRFAIRSHARE.

REF. This algorithm is a direct implementation of the definition from Section 3.1. It is

based on the concepts of utilities and contributions of the organizations. The contribu-

tion of the organization is defined by its Shapley value.

The referral algorithm schedules the jobs to ensure that the contributions of organi-

zations are as close to their utilities as possible. Calculating the Shapley value for the

organization is NP-hard and hard to approximate [17]. The core difficulty lies in the

fact that to calculate the Shapley value in each time moment one has to know the sched-

ules for each subset—with k organizations there are 2k such subsets. As the result, the

practical usage of the algorithm REF is limited and we can only use this algorithm as a

benchmark for evaluating other algorithms.

RAND. Taking into account the computational hardness of the algorithm REF, in our

previous work [17] we proposed a randomized algorithm. Instead of remembering the

schedules for all 2k subsets, the algorithm for each organization O(u) selects only N
random subsets not containing O(u). The contribution of O(u) is calculated based on

the marginal contribution ofO(u) only to these N subsets (the idea is similar to Monte-

Carlo methods for computing the Shapley value). Such approach guarantees that for

sufficiently large N with high probability we can get arbitrarily good approximation

bounds for the fairness [17]. Although this algorithm has good theoretical properties, it

requires a large N to produce high-quality schedules.

DIRECTCONTR (see Algorithm 1). The algorithm keeps for each organization O its

utility ψsp[O] and its estimated contribution φ[O]. The estimate of the contribution of

each organization is assessed directly (without considering any subcoalitions) by the

following heuristic. On each scheduling event t we consider the processors in a random

order and assign waiting jobs to free processors. The job that is started on processor m
increases the contribution φ̃ of the owner of m by the utility of this job.

In the pseudo code, finUt[O] denotes the number of the unit-size parts of the jobs

of the organization O that are completed before tprev . From Equation 2 we know that

the utility in time t of the unit-size parts of the jobs of the organization O that are

completed before tprev is greater by (t − tprev)finUt[O] than this utility in time tprev
(line 7); the utility of the unit-size parts of the job completed between tprev and t is

Algorithm 1: DIRECTCONTR: a heuristic algorithm for Shapley-fair scheduling.

Notation:

own(M), own(J) — the organization owning the processor M , the job J
wait(O) — the set of released, but not-yet scheduled jobs of the organization O at time t

1 Initialize(C):

2 foreach O(u) ∈ C do

3 finUt[O(u)]← 0; finCon[O(u)]← 0 ;

4 φ[O(u)]← 0; ψ[O(u)]← 0 ;

5 Schedule(tprev, t): // tprev is the time of the previous event

6 foreach O(u) ∈ C do

7 φ[O(u)]← φ[O(u)] + (t− tprev)finCon[O(u)];

8 ψ[O(u)]← ψ[O(u)] + (t− tprev)finUt[O(u)];

9 γ ← generate a random permutation of the set of all processors;

10 foreach m ∈ γ do

11 if not FreeMachine(m, t) then

12 J ← RunningJob(m);

13 finUt[own(J)]← finUt[own(J)] + t− tprev ;

14 finCon[own(m)]← finCon[own(m)] + t− tprev ;

15 φ[own(J)]← φ[own(J)] + 1
2
(t− tprev)(t− tprev + 1);

16 ψ[own(m)]← ψ[own(m)] + 1
2
(t− tprev)(t− tprev + 1);

17 foreach m ∈ γ do

18 if FreeMachine(m, t) and
⋃

O(u) wait(O
(u)) 6= ∅ then

19 org ← argmaxO(u):wait(O(u)) 6=∅(φ[O
(u)]− ψ[O(u)]) ;

20 J ← first waiting job of org ;

21 startJob(J , m) ;

22 finUt[org]← finUt[org] + 1 ;

23 finCon[own(m)]← finCon[own(m)] + 1 ;

equal to
∑t−tprev

i=1 i = 1
2 (t − tprev)(t − tprev + 1) (line 15). Similarly, finCon[O] de-

notes the number of the completed unit-size parts of the jobs processed on the proces-

sors of the organization O. The algorithm updates the utilities and the estimates of the

contributions. The waiting jobs are assigned to the processors in the order of decreasing

differences (φ − ψ) of the issuing organizations (similarly to REF).

ROUNDROBIN. The algorithm cycles through the list of organizations to determine the

job to be started.

FAIRSHARE [10]. This is perhaps the most popular scheduling algorithm using the idea

of distributive fairness. Each organization is given a target weight (a share). The algo-

rithm tries to ensure that the resources used by different organizations are proportional

to their shares. More formally, whenever there is a free processor and some jobs waiting

for execution, the algorithm sorts the organizations in the ascending order of the ratios:

the total time of the processor already assigned for the jobs of the organization divided

by its share. A job from the organization with the lowest ratio is started.

In all versions of fair share, in the experiments we set the target share to the fraction

of processors contributed by an organization to the global pool.

UTFAIRSHARE. This algorithm uses the same idea as FAIRSHARE. The only differ-

ence is that UTFAIRSHARE tries to balance the utilities of the organizations instead of

their resource allocation. Thus, in each step the job of the organization with the smallest

ratio of utility to share is selected.

CURRFAIRSHARE. This version of the fair share algorithm does not keep any history;

it only ensures that, for each organization, the number of currently executing jobs is

proportional to its target share.

5 Simulation experiments

5.1 Settings

To run simulations, we chose the following workloads from the Parallel Workload

Archive [5]: 1. LPC-EGEE1 (cleaned version), 2. PIK-IPLEX2, 3. RICC3, 4. SHARC-

NET-Whale4. We selected traces that closely resemble sequential workloads (in the se-

lected traces most of the jobs require a single processor). We replaced parallel jobs that

required q > 1 processors with q copies of a sequential job having the same duration.

In each workload, each job has a user identifier (in the workloads there are respec-

tively 56, 225, 176 and 154 distinct user identifiers). To distribute the jobs between the

organizations we uniformly distributed the user identifiers between the organizations;

the job sent by the given user was assigned to the corresponding organization.

Because REF is exponential, the experiments are computationally-intensive; in most

of the experiments, we simulate only 5 organizations.

The users usually send their jobs in consecutive blocks. We also considered a sce-

nario when the jobs are uniformly distributed between organizations (corresponding to

a case when the number of users within organizations is large, in which case the dis-

tribution of the jobs should be close to uniform). These experiments led to the same

conclusions, so we present only the results from the case when the user identifiers were

distributed between the organizations.

For each workload, the total number of the processors in the system was equal to the

number originally used in the workload (that is 70, 2560, 8192 and 3072, respectively).

The processors were assigned to organizations so that the counts follow Zipf and (in

different runs) uniform distributions.

For each algorithm, we compared the vector of the utilities (the utilities per orga-

nization) at the end of the simulated time period (a fixed time tend): ψ with the vec-

tor of the utilities in the ideally fair schedule ψ∗ (computed by REF). Let ptot denote

the total number of the unit-size parts of the jobs completed in the fair schedule re-

turned by REF, ptot =
∑

(s,p)∈σ∗:s≤tend
min(p, tend − s). We calculated the difference

∆ψ = |ψ − ψ∗| =
∑

O(u)(ψ(u) − ψ(u),∗) and compared the values ∆ψ/ptot for dif-

ferent algorithms. The value∆ψ/ptot is the measure of the fairness that has an intuitive

1 www.cs.huji.ac.il/labs/parallel/workload/l lpc/index.html
2 www.cs.huji.ac.il/labs/parallel/workload/l pik iplex/index.html
3 www.cs.huji.ac.il/labs/parallel/workload/l ricc/index.html
4 www.cs.huji.ac.il/labs/parallel/workload/l sharcnet/index.html

Table 1. The average delay (or the speed up) of jobs due to the unfairness of the algorithm

∆ψ/ptot for different algorithms and different workloads. Each row is an average over 100 in-

stances taken as parts of the original workload. The duration of the experiment is 5 · 104.

LPC-EGEE PIK-IPLEX SHARCNET-Whale RICC

Avg St. dev. Avg St. dev. Avg St. dev. Avg St. dev.

ROUNDROBIN 238 353 6 33 145 38 2839 357

RAND (N = 15) 8 21 0.014 0.01 6 6 162 187

DIRECTCONTR 5 11 0.02 0.15 10 7 537 303

FAIRSHARE 16 25 0.3 1.38 13 8 626 309

UTFAIRSHARE 16 25 0.3 1.38 38 67 515 284

CURRFAIRSHARE 87 106 0.3 1.58 145 80 1231 243

Table 2. The average delay (or the speed up) of jobs due to the unfairness of the algorithm

∆ψ/ptot for different algorithms and different workloads. Each row is an average over 100 in-

stances taken as parts of the original workload. The duration of the experiment is 5 · 105.

LPC-EGEE PIK-IPLEX SHARCNET-Whale RICC

Avg St. dev. Avg St. dev. Avg St. dev. Avg St. dev.

ROUNDROBIN 4511 6257 242 1420 404 1221 10850 13773

RAND (N = 15) 562 1670 1.3 7 26 158 771 1479

DIRECTCONTR 410 1083 0.2 1.4 60 204 1808 3397

FAIRSHARE 575 1404 2.3 12 94 307 2746 4070

UTFAIRSHARE 888 2101 1.2 5 120 344 4963 6080

CURRFAIRSHARE 1082 2091 2.2 11 180 805 5387 9083

interpretation. Since delaying each unit-size part of a job by one time moment decreases

the utility of the job owner by one, the value ∆ψ/ptot gives the average unjustified de-

lay (or unjustified speed-up) of a job due to the unfairness of the algorithm.

5.2 Results

We start with experiments on short sub-traces of the original workloads. We randomly

selected the start time of the experiment tstart and set the end time to tend = tstart+5 ·
104. For each workload we run 100 experiments (on different periods of workloads of

length 5·104). The average values of∆ψ/ptot, and the standard deviations are presented

in Table 1.

From this part of the experiments we conclude that: (i) The algorithm RAND is the

most fair algorithm regarding the fairness by the Shapley Value; but RAND is the sec-

ond most computationally intensive algorithm (after REF). (ii) All the other algorithms

are about equally computationally efficient. The algorithm DIRECTCONTR is the most

fair. (iii) The algorithm FAIRSHARE, which is the algorithm mostly used in real sys-

tems, is not much worse than DIRECTCONTR. (iv) Arbitrary scheduling algorithms

like ROUNDROBIN may result in unfair schedules. (v) The fairness of the algorithms

may depend on the workload. In RICC the differences are much more visible than in

PIK-IPLEX. Thus, although DIRECTCONTR and FAIRSHARE are usually comparable,

on some workloads the difference is important.

0

2 ·103

4 ·103

6 ·103

8 ·103

1 ·104

A
v
g

d
el

ay
:

∆
ψ
/p

t
o

t

2 4 6 8 10

number of organizations

RoundRobin

CurrFairShare

FairShare

DirectContr

Rand (N=15)

Fig. 1. The effect of the number of the organizations on ratio ∆ψ/ptot.

In the second series of experiments, we verified the effect of the duration of the sim-

ulated workload on the resulting fairness measure (the ratio ∆ψ/ptot). As we changed

the duration of the experiments from 5 · 104 to 5 · 105, we observed that the unfairness

ratio ∆ψ/ptot was increasing. The value of the ratio for tend − tstart = 5 · 105 are

presented in Table 2. The relative quality of the algorithms is the same as in the previ-

ous case. Thus, all our previous conclusions hold. However, now all the algorithms are

significantly less fair than the exact algorithm. Thus, in long-running systems the differ-

ence between the approaches becomes more important. If there are a few organizations,

the exact REF or the randomized RAND algorithms should be used. In larger systems,

when the computational cost of these is too high, DIRECTCONTR clearly outperforms

FAIRSHARE.

Last, we verified the effect of the number of the organizations on the ratio∆ψ/ptot.
The results from the experiments conducted on LPC-EGEE data set are presented in

Figure 1. As the number of organizations increases, the unfairness ratio∆ψ/ptot grows;

thus the difference between the algorithms is more significant. This confirms our previ-

ous conclusions. The relative fairness of the algorithms is the same as in our previous

experiments.

6 Conclusions

In this paper we present DIRECTCONTR, a heuristic algorithm for the problem of

Shapley-fair scheduling. We conduct extensive experimental evaluation of the fairness

of our algorithm comparing it to other algorithms used in real systems. We conclude that

the randomized algorithm is the closest to the referral exponential algorithm, yet it is

also the most computationally intensive. Among computationally-tractable algorithms,

DIRECTCONTR, our heuristic, is the closest to the referral algorithm, although on

shorter workloads with relatively few organizations, the fair share algorithm is similar.

The difference between algorithms becomes significant in longer-running systems with

many organizations. The main conclusion from our work is that in multi-organizational

systems, the distributive fairness used by fair share does not result in truly-fair sched-

ules; our heuristic better approximates the Shapley-fair schedules.

References

1. T. E. Carroll and D. Grosu. Divisible load scheduling: An approach using coalitional games.

In ISPDC, Proceedings, 2007.

2. H. M. Chaskar and U. Madhow. Fair scheduling with tunable latency: a round-robin ap-

proach. IEEE/ACM Trans. Netw., 11(4):592–601, 2003.

3. J. Cohen, D. Cordeiro, D. Trystram, and F. Wagner. Multi-organization scheduling approxi-

mation algorithms. Concurrency and Computation: Practice and Experience, 23(17):2220–

2234, 2011.

4. P.-F. Dutot, F. Pascual, K. Rzadca, and D. Trystram. Approximation algorithms for the multi-

organization scheduling problem. IEEE Transactions on Parallel and Distributed Systems,

22:1888 – 1895, 2011.

5. D. G. Feitelson. Parallel workloads archive. http://www.cs.huji.ac.il/labs/parallel/workload/.

6. P. Goyal, H. M. Vin, and H. Chen. Start-time fair queueing: a scheduling algorithm for

integrated services packet switching networks. In SIGCOMM, Proceedings, pages 157–168,

1996.

7. A. Gulati and I. Ahmad. Towards distributed storage resource management using flow con-

trol. SIGOPS Oper. Syst. Rev., 42(6):10–16, 2008.

8. A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA: Proportional Allocation of Resources

for Distributed Storage Access. In FAST, Proceedings, Feb. 2009.

9. W. Jin, J. S. Chase, and J. Kaur. Interposed proportional sharing for a storage service utility.

SIGMETRICS Perform. Eval. Rev., 32(1):37–48, 2004.

10. J. Kay and P. Lauder. A fair share scheduler. Communications of the ACM, 31(1):44–55,

1988.

11. M. M. Kostreva, W. Ogryczak, and A. Wierzbicki. Equitable aggregations and multiple

criteria analysis. European Journal of Operational Research, 158(2):362–377, 2004.

12. L. Mashayekhy and D. Grosu. A merge-and-split mechanism for dynamic virtual organiza-

tion formation in grids. In PCCC, Proceedings, pages 1–8, 2011.

13. D. Mishra and B. Rangarajan. Cost sharing in a job scheduling problem using the shapley

value. In EC, Proceedings, pages 232–239, 2005.

14. H. Moulin. On scheduling fees to prevent merging, splitting, and transferring of jobs. Math.

Oper. Res., 32(2):266–283, May 2007.

15. M. J. Osborne and A. Rubinstein. A Course in Game Theory, volume 1 of MIT Press Books.

The MIT Press, 1994.

16. K. Rzadca, D. Trystram, and A. Wierzbicki. Fair game-theoretic resource management in

dedicated grids. In CCGRID, Proceedings, 2007.

17. P. Skowron and K. Rzadca. Non-monetary fair scheduling — cooperative game theory ap-

proach. In SPAA (see also the extended arxiv version), 2013.

18. Y. Wang and A. Merchant. Proportional-share scheduling for distributed storage systems. In

FAST, Proceedings, pages 4–4, 2007.

Acknowledgements. This work is partly supported by Polish National Science Cen-

ter Sonata grant UMO-2012/07/D/ST6/02440

